Braun Augustin, Titus Charles J, Gee Leland B, Baker Michael L, Waters Max D J, Yan James J, Lee Sang-Jun, Nordlund Dennis, Doriese William B, O'Neil Galen C, Schmidt Daniel R, Swetz Daniel S, Ullom Joel N, Irwin Kent D, Solomon Edward I
Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States.
J Am Chem Soc. 2025 Jun 25;147(25):21313-21318. doi: 10.1021/jacs.5c05261. Epub 2025 Jun 11.
The electronic structure of oxyhemoglobin has been controversial since the discovery of the compound's diamagnetism in 1936. This study uses partial fluorescence yield Fe L-edge X-ray absorption spectroscopy (XAS) in the 3s→2p fluorescence on oxyhemoglobin solutions, measured using a transition-edge sensor detector, to obtain a quantitative experimental description of the electronic structure of the O-bound iron site. The spectrum is very different from typical low-spin Fe and Fe heme spectra, and multiplet simulations indicate a mixed ground configuration with ∼57% low-spin Fe and ∼43% low-spin Fe character. This is also very different from the Fe character found for the picket-fence porphyrin model complex. The oxyhemoglobin L-edge XAS data further show that the O ligand engages in a weak σ- but strong π-bond with the iron ion, leading to the overall strong Fe-O bond required for O transport.
自1936年发现该化合物的抗磁性以来,氧合血红蛋白的电子结构一直存在争议。本研究使用部分荧光产额Fe L边X射线吸收光谱(XAS),在使用过渡边缘传感器探测器测量的氧合血红蛋白溶液的3s→2p荧光中,获得与氧结合的铁位点电子结构的定量实验描述。该光谱与典型的低自旋Fe和Fe血红素光谱非常不同,多重态模拟表明其基态构型混合,低自旋Fe特征约为57%,低自旋Fe特征约为43%。这也与尖桩栅栏卟啉模型配合物中的Fe特征非常不同。氧合血红蛋白L边XAS数据进一步表明,O配体与铁离子形成弱σ键但强π键,从而产生O运输所需的整体强Fe-O键。