Qi Manlin, Ding Qihang, Shi Yujia, Wang Kun, Liu Jia, Zhou Jing, Zhang Wei, Liu Chengyu, Liang Shuang, Dong Biao, Kim Jong Seung, Wang Lin
Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
Department of Chemistry, Korea University, Seoul, 02841, South Korea.
Biomaterials. 2026 Jan;324:123487. doi: 10.1016/j.biomaterials.2025.123487. Epub 2025 Jun 7.
Antibacterial treatment for periodontitis faces significant challenges due to the lack of selective bactericidal therapies. In this study, we developed multifunctional nanospheres encapsulated with Fusobacterium nucleatum-derived outer membrane vesicles (OMVs) to target periodontal pathogens specifically. These OMVs act as a "camouflage," allowing the nanospheres to infiltrate bacterial environments undetected, adhere to pathogen surfaces, and maximize therapeutic effects. Direct contact between nanospheres and bacteria accelerates electron transfer, and nanospheres trigger a proliferation of endogenous reactive oxygen species (ROS), leading to oxidative stress and bacterial death. Transcriptomic analysis confirmed that the nanospheres accelerated electron transfer activity and disrupted deoxyribonucleic acid (DNA) repair mechanisms and thiamine metabolism while enhancing bacterial respiration. Though supported by dual photodynamic and photothermal therapies under near-infrared light, the primary mechanism of action focuses on electron transfer and metabolic disruption. In vitro and in vivo experiments demonstrated the nanospheres' potent biofilm eradication and periodontitis treatment efficacy, offering a promising new approach for selective bacterial targeting. This strategy targets pathogens effectively and preserves the beneficial microbiota, providing an innovative solution for treating periodontitis and other biofilm-related infections.
由于缺乏选择性杀菌疗法,牙周炎的抗菌治疗面临重大挑战。在本研究中,我们开发了包裹具核梭杆菌衍生外膜囊泡(OMV)的多功能纳米球,以特异性靶向牙周病原体。这些OMV起到“伪装”作用,使纳米球能够在不被察觉的情况下渗透到细菌环境中,附着在病原体表面,并最大化治疗效果。纳米球与细菌之间的直接接触加速了电子转移,并且纳米球引发内源性活性氧(ROS)的增殖,导致氧化应激和细菌死亡。转录组分析证实,纳米球加速了电子转移活性,破坏了脱氧核糖核酸(DNA)修复机制和硫胺素代谢,同时增强了细菌呼吸作用。尽管在近红外光下有双光动力和光热疗法的支持,但其主要作用机制集中在电子转移和代谢破坏上。体外和体内实验证明了纳米球对生物膜的强大根除作用和对牙周炎的治疗效果,为选择性细菌靶向提供了一种有前景的新方法。该策略有效地靶向病原体并保留有益微生物群,为治疗牙周炎和其他生物膜相关感染提供了一种创新解决方案。