Raczkiewicz Monika, Oleszczuk Patryk
Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland.
Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland.
J Environ Manage. 2025 Aug;389:126072. doi: 10.1016/j.jenvman.2025.126072. Epub 2025 Jun 10.
This study investigates the adsorption efficiency of nano-biochars (n-BC) produced via ball-milling technique from various feedstocks (willow-WL, sewage sludge-SSL, rice husk-RH, oilseed rape-OSR) under different pyrolysis conditions. The most notable differences between n-BC and bulk biochars (b-BC) were observed in specific surface area (S), total pore volume (V), and ash content-all of which increased in n-BCs, potentially enhancing their adsorption capacity. Adsorption kinetics, isotherms, and the impact of feedstock, pyrolysis temperature, atmosphere, and particle size on PTEs removal were analyzed. The adsorption performance toward Cd(II), Zn(II), and Pb(II) ions was evaluated separately in individual experiments to avoid competitive effects. The results demonstrated that n-BC significantly enhances the adsorption of Cd(II), Zn(II), and Pb(II) ions, with Pb(II) showing the highest adsorption capacity ranged from 276.4 to 431.9 mg/g. Adsorption followed a pseudo-second-order model, indicating chemisorption as the dominant mechanism. Reducing b-BC to the nanoscale increased adsorption capacity by up to 332 %, with specific feedstocks and pyrolysis conditions optimizing performance. This study provides valuable insights into BC's potential for sustainable PTEs remediation and highlights the critical role of nanostructuring and process optimization in enhancing adsorption efficiency. Moreover, this study offers a unique and systematic comparison of n-BCs derived from a wide range of feedstocks, spanning from lignocellulosic materials to more complex, nutrient- and ash-rich sources such as SSL. This comprehensive approach enables an in-depth exploration of how the intrinsic physicochemical properties of different feedstocks influence the PTEs adsorption performance of n-BCs. In addition, the study highlights the critical role of N as a pyrolysis atmosphere in significantly enhancing Zn(II) adsorption. This distinctive observation emphasizes the importance of tailoring pyrolysis conditions to maximize the functional performance of biochar (BC) materials. By providing a detailed understanding of the interplay between feedstock characteristics and pyrolysis parameters, this work makes a substantial contribution to the development of next-generation, sustainable technologies for the removal of PTEs.
本研究考察了通过球磨技术由各种原料(柳树-WL、污水污泥-SSL、稻壳-RH、油菜籽-OSR)在不同热解条件下制备的纳米生物炭(n-BC)的吸附效率。n-BC与块状生物炭(b-BC)之间最显著的差异体现在比表面积(S)、总孔体积(V)和灰分含量上,所有这些在n-BC中均有所增加,这可能会提高它们的吸附能力。分析了吸附动力学、等温线以及原料、热解温度、气氛和粒径对去除潜在有毒元素(PTEs)的影响。为避免竞争效应,在单独的实验中分别评估了对Cd(II)、Zn(II)和Pb(II)离子的吸附性能。结果表明,n-BC显著增强了对Cd(II)、Zn(II)和Pb(II)离子的吸附,其中Pb(II)的吸附容量最高,范围为276.4至431.9 mg/g。吸附遵循准二级模型,表明化学吸附是主要机制。将b-BC缩小至纳米尺度可使吸附容量提高高达332%,特定的原料和热解条件可优化性能。本研究为生物炭在可持续修复PTEs方面的潜力提供了有价值的见解,并突出了纳米结构化和工艺优化在提高吸附效率中的关键作用。此外,本研究对源自多种原料的n-BC进行了独特而系统的比较,这些原料涵盖了从木质纤维素材料到更复杂的、富含营养和灰分的来源,如SSL。这种综合方法能够深入探索不同原料的内在物理化学性质如何影响n-BC对PTEs的吸附性能。此外,该研究突出了N作为热解气氛在显著增强Zn(II)吸附方面的关键作用。这一独特的观察结果强调了定制热解条件以最大化生物炭(BC)材料功能性能的重要性。通过详细了解原料特性与热解参数之间的相互作用,这项工作为开发下一代可持续的PTEs去除技术做出了重大贡献。