Saleh Hager, El-Sappagh Shaker, McCann Michael, Alsamhi Saeed Hamood, Breslin John G
Insight Research Ireland Centre for Data Analytics, School of Engineering, University of Galway, University Road, Galway, H91 TK33, Ireland; Atlantic Technological University, Letterkenny, Donegal, Ireland; Faculty of Computers and Artificial Intelligence, Hurghada University, Hurghada, Egypt.
Faculty of Computer Science and Engineering, Galala University, Suez, 435611, Egypt; Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University, Banha, 13518, Egypt.
Comput Biol Med. 2025 Aug;194:110406. doi: 10.1016/j.compbiomed.2025.110406. Epub 2025 Jun 10.
The real-time forecasting of critical physiological indicators in intensive care units (ICUs) is essential for early intervention and clinical decision support. This study introduces a novel framework, StreamHealth Multi-Horizon AI, which has been designed to perform multivariate, multi-horizon time-series forecasting for vital signs, specifically for a person's blood oxygen saturation level (SpO2) and respiratory rate (RR). The framework leverages advanced attention-based models, with a particular emphasis on the Temporal Fusion Transformer (TFT) and Temporal Convolutional Network (TCN), and we benchmark its performance against classical deep learning architectures, including LSTM, GRU, Bi-LSTM, Bi-GRU, CNN, and Sequence-to-Sequence (Seq2Seq) models with and without attention mechanisms. Both univariate and multivariate forecasting tasks are explored across multiple prediction horizons (i.e., 7, 15 and 25 min), using physiological time-series data from the MIMIC-III database. The proposed system incorporates a cascaded fine-tuning strategy, wherein the TFT model is sequentially fine-tuned on individual patients' data, significantly enhancing the model's generalizability to unseen patient profiles. Empirical results demonstrate that the TFT model consistently outperforms baseline models across all forecasting settings, achieving lower RMSE and MAE values, and exhibiting superior capacity for capturing long-sequence dependencies and temporal feature dynamics. To validate its applicability in real-time clinical environments, the framework integrates a simulated streaming infrastructure using Apache Kafka and Apache Flink, enabling continuous data ingestion, forecasting, and visualization of vital signs. This end-to-end deployment underscores the system's potential for ICU monitoring, allowing clinicians to anticipate patient deterioration proactively. In summary, we introduce a comprehensive framework that uniquely integrates TFT with cascaded fine-tuning for multivariate, multi-horizon forecasting of critical ICU indicators. Additionally, we demonstrate a simulation for a real-time deployment pipeline using Kafka and Flink, enabling robust and generalizable ICU monitoring in clinical settings. As a result, this work has contributed a robust and clinically relevant AI solution for real-time healthcare monitoring.
重症监护病房(ICU)中关键生理指标的实时预测对于早期干预和临床决策支持至关重要。本研究引入了一种新颖的框架,即StreamHealth多步长人工智能,其设计目的是对生命体征进行多变量、多步长时间序列预测,特别是针对人的血氧饱和度水平(SpO2)和呼吸频率(RR)。该框架利用了先进的基于注意力的模型,特别强调时间融合变换器(TFT)和时间卷积网络(TCN),并且我们将其性能与经典深度学习架构进行基准测试,包括带有和不带有注意力机制的长短期记忆网络(LSTM)、门控循环单元(GRU)、双向长短期记忆网络(Bi-LSTM)、双向门控循环单元(Bi-GRU)、卷积神经网络(CNN)以及序列到序列(Seq2Seq)模型。使用来自MIMIC-III数据库的生理时间序列数据,在多个预测步长(即7、15和25分钟)上探索单变量和多变量预测任务。所提出的系统采用了级联微调策略,其中TFT模型在个体患者的数据上依次进行微调,显著提高了模型对未见患者概况的泛化能力。实证结果表明,TFT模型在所有预测设置下始终优于基线模型,实现了更低的均方根误差(RMSE)和平均绝对误差(MAE)值,并且在捕获长序列依赖性和时间特征动态方面表现出卓越的能力。为了验证其在实时临床环境中的适用性,该框架集成了使用Apache Kafka和Apache Flink的模拟流基础设施,实现了生命体征的连续数据摄取、预测和可视化。这种端到端的部署突出了该系统在ICU监测方面的潜力,使临床医生能够主动预测患者病情恶化。总之,我们引入了一个综合框架,该框架独特地将TFT与级联微调相结合,用于ICU关键指标的多变量、多步长预测。此外,我们展示了使用Kafka和Flink进行实时部署管道的模拟,从而在临床环境中实现强大且可泛化的ICU监测。因此,这项工作为实时医疗监测贡献了一个强大且与临床相关的人工智能解决方案。