Suppr超能文献

一种没食子酸配位自组装多功能界面实现高度可逆的锌负极。

A gallic acid coordination self-assembled multifunctional interphase enabling highly reversible Zn anodes.

作者信息

Chen Jingtao, Shao Siyuan, Lin Xiaoyan, Li Dongze, Wu Yingxin, Zhou Yanting, Cai Donghui, Wang Ziqi

机构信息

Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China.

Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China.

出版信息

J Colloid Interface Sci. 2025 Nov 15;698:138127. doi: 10.1016/j.jcis.2025.138127. Epub 2025 Jun 8.

Abstract

Zinc metal batteries have emerged as compelling contenders for next-generation energy storage systems, yet their practical viability remains severely hampered by intrinsic challenges associated with Zn metal anodes, such as uncontrolled dendritic growth, vigorous hydrogen evolution, and sluggish interfacial kinetics. Addressing these issues, we rationally engineer a coordination self-assembled multifunctional interphase (GSI) derived from gallic acid, which spontaneously constructs on the Zn surface via strong coordination interactions. The GSI interphase, enriched with densely packed phenolic hydroxyl and carboxyl moieties, acts as a multifunctional regulator: it offers abundant zincophilic sites to guide homogeneous Zn flux and significantly lowers the nucleation energy barrier, thereby enabling smooth and reversible Zn plating/stripping. Beyond ion-level modulation, the GSI firmly anchors onto the Zn substrate, preventing the direct contact between the Zn metal anode and aqueous electrolyte. More intriguingly, the gallic acid component exhibits a strong chemical affinity toward HO molecules, enabling preferential displacement of active water from the inner Helmholtz plane (IHP), which fundamentally suppresses parasitic side reactions. Therefore, the functionalized anode achieves superior electrochemical performance, maintaining a prolonged cycling lifespan exceeding 1550 h at 1 mA cm with an ultralow polarization voltage of merely ∼23 mV. This work not only unveils a simple yet powerful interfacial design strategy, but also offers critical insights into molecular-level manipulation of the Zn-electrolyte interface, paving the way toward next-generation, high-efficiency aqueous Zn-ion energy storage systems.

摘要

锌金属电池已成为下一代储能系统的有力竞争者,然而其实际可行性仍受到与锌金属负极相关的内在挑战的严重阻碍,如不受控制的枝晶生长、剧烈的析氢反应和缓慢的界面动力学。为了解决这些问题,我们合理设计了一种由没食子酸衍生的配位自组装多功能界面(GSI),它通过强配位相互作用自发地在锌表面形成。GSI界面富含紧密堆积的酚羟基和羧基部分,起到多功能调节剂的作用:它提供大量亲锌位点以引导均匀的锌离子通量,并显著降低成核能垒,从而实现平滑且可逆的锌沉积/剥离。除了离子水平的调控,GSI牢固地锚定在锌基底上,防止锌金属负极与水电解质直接接触。更有趣的是,没食子酸成分对水分子表现出很强的化学亲和力,能够优先从内亥姆霍兹平面(IHP)置换活性水,从根本上抑制寄生副反应。因此,功能化负极实现了优异的电化学性能,在1 mA cm下保持超过1550小时的长循环寿命,超极化电压仅约23 mV。这项工作不仅揭示了一种简单而强大的界面设计策略,还为锌 - 电解质界面的分子水平操纵提供了关键见解,为下一代高效水系锌离子储能系统铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验