Kawashima Takashi, Wei Ziqiang, Haruvi Ravid, Shainer Inbal, Narayan Sujatha, Baier Herwig, Ahrens Misha B
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Brain Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
Neuron. 2025 Aug 20;113(16):2692-2707.e8. doi: 10.1016/j.neuron.2025.05.017. Epub 2025 Jun 10.
As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We tracked the raphe's input-output computations at millisecond timescales using voltage and neurotransmitter imaging and found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling the encoding of action outcomes and filtering out learning-irrelevant visual signals. Specifically, swim commands initially inhibited serotonergic neurons via γ-aminobutyric acid (GABA). Immediately after, membrane voltage increased via post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin release to modulate future motor vigor. Ablating local GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe.
随着动物适应新环境,神经调节是改变行为的一种有效方式,但神经调节核在行为过程中的计算机制尚未得到充分探索。血清素能中缝核通过视觉检测游泳过程中行进的距离、编码动作有效性以及调节运动活力,来支持斑马鱼幼体的运动学习。我们使用电压和神经递质成像技术,在毫秒时间尺度上追踪中缝核的输入 - 输出计算过程,发现游泳为视觉输入打开了一扇门,使血清素能神经元产生动作电位,从而能够对动作结果进行编码,并过滤掉与学习无关的视觉信号。具体而言,游泳指令最初通过γ-氨基丁酸(GABA)抑制血清素能神经元。紧接着,膜电压通过抑制后反弹而升高,使得游泳引起的视觉运动能够通过谷氨酸诱发放电,触发血清素释放,以调节未来的运动活力。消融局部GABA能神经元会损害中缝核编码和运动学习。因此,血清素能神经调节源于中缝核内动作结果的巧合检测。