Suppr超能文献

一种用于生存分析中处理结局依赖抽样的新型逆概率选择加权Cox模型。

A New Inverse Probability of Selection Weighted Cox Model to Deal With Outcome-Dependent Sampling in Survival Analysis.

作者信息

Arntzen Vera H, Fiocco Marta, Lakeman Inge M M, Nielsen Maartje, Rodríguez-Girondo Mar

机构信息

Mathematical Institute, Section of Statistics, Leiden University, Leiden, The Netherlands.

Department of Biomedical Data Sciences, Section of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

Biom J. 2025 Jun;67(3):e70056. doi: 10.1002/bimj.70056.

Abstract

Motivated by the study of genetic effect modifiers of cancer, we examined weighting approaches to correct for ascertainment bias in survival analysis. Outcome-dependent sampling is common in genetic epidemiology leading to study samples with too many events in comparison to the population and an overrepresentation of young, affected subjects. A usual approach to correct for ascertainment bias in this setting is to use an inverse probability-weighted Cox model, using weights based on external available population-based age-specific incidence rates of the type of cancer under investigation. However, the current approach is not general enough leading to invalid weights in relevant practical settings if oversampling of cases is not observed in all age groups. Based on the same principle of weighting observations by their inverse probability of selection, we propose a new, more general approach, called the generalized weighted approach. We show the advantage of the new generalized weighted cohort method using simulations and two real data sets. In both applications, the goal is to assess the association between common susceptibility loci identified in genome-wide association studies (GWAS) and cancer (colorectal and breast) using data collected through genetic testing in clinical genetics centers.

摘要

受癌症基因效应修饰研究的推动,我们研究了在生存分析中校正确定偏倚的加权方法。结局依赖抽样在遗传流行病学中很常见,导致研究样本与总体相比事件过多,且年轻的受影响受试者比例过高。在这种情况下校正确定偏倚的常用方法是使用逆概率加权Cox模型,权重基于外部可得的基于人群的所研究癌症类型的年龄特异性发病率。然而,当前方法不够通用,如果并非在所有年龄组中都观察到病例过度抽样,在相关实际情况下会导致权重无效。基于通过观察的选择逆概率对观察进行加权的相同原理,我们提出了一种新的、更通用的方法,称为广义加权方法。我们通过模拟和两个真实数据集展示了新的广义加权队列方法的优势。在这两个应用中,目标是使用临床遗传学中心通过基因检测收集的数据,评估全基因组关联研究(GWAS)中鉴定的常见易感基因座与癌症(结直肠癌和乳腺癌)之间的关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验