Suppr超能文献

基于治疗前CT的机器学习影像组学模型预测同步放化疗联合PD-1抑制剂治疗不可切除Ⅲ期非小细胞肺癌的疗效

Pretreatment CT-Based Machine Learning Radiomics Model Predicts Response in Inoperable Stage III NSCLC Treated with Concurrent Radiochemotherapy Plus PD-1 Inhibitors.

作者信息

Li Ya, Zhang Min, Hu Yong, Du Bo, Mo Youlong, He Tianchu, Zhao Mingdan, Li Benlan, Xia Ji, Huang Zhongjun, Lu Fangyang, Huang Zhen, Lu Bing, Peng Jie

机构信息

Department of Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China.

Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.

出版信息

Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251351109. doi: 10.1177/15330338251351109. Epub 2025 Jun 12.

Abstract

ObjectiveTo develop and validate a CT-based radiomics model for predicting sequential immunotherapy response after concurrent radiochemotherapy (CCRT) in patients with unresectable stage III non-small cell lung cancer (NSCLC).MethodsThe study retrospectively included 71 patients who received sequential immunotherapy after concurrent chemoradiotherapy (CCRT) between January 2019 and December 2022, while prospectively including 17 additional patients between January 2023 and July 2023. The study documented each patient's tumor response and prognosis within two months of completing treatment. Patients were then categorized based on their treatment response, resulting in the identification of two distinct groups: treatment-responsive group and treatment-insensitive group. First, ITK-SNAP software was used to delineate the primary tumor lesions in the lung window and define a region of interest (ROI). Second, features were extracted using Python (version 3.6) and filtered using Least absolute shrinkage and selection operator regression. Third, radiological models were built using six machine learning algorithms: logistic regression (LR), discriminant analysis (DA), neural network (NN), random forest (RF), support vector machine (SVM) and K-Nearest Neighbour (KNN). Finally, Kaplan-Meier survival analysis was performed for high- and low-risk patients predicted by radiomic modeling.ResultsBased on the performance of radiomics models constructed by various machine learning algorithms in the prospective validation set, the LR with the highest AUC value (AUC: 90.00%) was finally selected, which also performed well in the independent test set (AUC: 84.96%). Risk stratification of patients based on the radiomic model constructed by LR was excellent for PFS (P = 0.001) and OS (P = 0.019) in the training set, PFS (P = 0.010) and OS (P = 0.028) in the prospective validation set, and PFS (P = 0.014) and OS (P = 0.041) in the test set.ConclusionPretreatment CT-based radiomics model accurately and efficiently predicts treatment response and risk stratification in patients with unresectable stage III NSCLC treated with concurrent chemoradiotherapy and sequential programmed death-1 inhibitor therapy. Prior to prospective data collection, the study was registered with the China Clinical Trial Registry under the trial registration name: Prediction of concurrent chemoradiotherapy efficacy and its related molecular signaling pathway by medical artificial intelligence model based on CT of lung cancer, with the registration number: ChiCTR2100053175 (https://www.chictr.org.cn/showproj.html?proj = 136872).

摘要

目的

开发并验证一种基于CT的放射组学模型,用于预测不可切除的III期非小细胞肺癌(NSCLC)患者同步放化疗(CCRT)后序贯免疫治疗的反应。

方法

本研究回顾性纳入了2019年1月至2022年12月期间接受同步放化疗后序贯免疫治疗的71例患者,同时前瞻性纳入了2023年1月至2023年7月期间的17例患者。研究记录了每位患者在完成治疗后两个月内的肿瘤反应和预后情况。然后根据患者的治疗反应进行分类,从而确定了两个不同的组:治疗反应组和治疗不敏感组。首先,使用ITK-SNAP软件在肺窗中勾勒出原发性肿瘤病变并定义感兴趣区域(ROI)。其次,使用Python(3.6版)提取特征,并使用最小绝对收缩和选择算子回归进行筛选。第三,使用六种机器学习算法构建放射学模型:逻辑回归(LR)、判别分析(DA)、神经网络(NN)、随机森林(RF)、支持向量机(SVM)和K近邻(KNN)。最后,对放射组学模型预测的高风险和低风险患者进行Kaplan-Meier生存分析。

结果

基于各种机器学习算法在前瞻性验证集中构建的放射组学模型的性能,最终选择了AUC值最高的LR(AUC:90.00%),其在独立测试集中也表现良好(AUC:84.96%)。基于LR构建的放射组学模型对训练集的无进展生存期(PFS,P = 0.001)和总生存期(OS,P = 0.019)、前瞻性验证集的PFS(P = 0.010)和OS(P = 0.028)以及测试集的PFS(P = 0.014)和OS(P = 0.041)进行的风险分层效果良好。

结论

基于治疗前CT的放射组学模型能够准确、高效地预测接受同步放化疗和序贯程序性死亡-1抑制剂治疗的不可切除III期NSCLC患者的治疗反应和风险分层。在进行前瞻性数据收集之前,本研究已在中国临床试验注册中心注册,试验注册名称为:基于肺癌CT的医学人工智能模型预测同步放化疗疗效及其相关分子信号通路,注册号:ChiCTR2100053175(https://www.chictr.org.cn/showproj.html?proj = 136872)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验