Suppr超能文献

基于 CT 的集成深度学习预测非小细胞肺癌患者免疫检查点抑制剂获益:一项回顾性研究。

Predicting benefit from immune checkpoint inhibitors in patients with non-small-cell lung cancer by CT-based ensemble deep learning: a retrospective study.

机构信息

Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Lancet Digit Health. 2023 Jul;5(7):e404-e420. doi: 10.1016/S2589-7500(23)00082-1. Epub 2023 May 31.

Abstract

BACKGROUND

Only around 20-30% of patients with non-small-cell lung cancer (NCSLC) have durable benefit from immune-checkpoint inhibitors. Although tissue-based biomarkers (eg, PD-L1) are limited by suboptimal performance, tissue availability, and tumour heterogeneity, radiographic images might holistically capture the underlying cancer biology. We aimed to investigate the application of deep learning on chest CT scans to derive an imaging signature of response to immune checkpoint inhibitors and evaluate its added value in the clinical context.

METHODS

In this retrospective modelling study, 976 patients with metastatic, EGFR/ALK negative NSCLC treated with immune checkpoint inhibitors at MD Anderson and Stanford were enrolled from Jan 1, 2014, to Feb 29, 2020. We built and tested an ensemble deep learning model on pretreatment CTs (Deep-CT) to predict overall survival and progression-free survival after treatment with immune checkpoint inhibitors. We also evaluated the added predictive value of the Deep-CT model in the context of existing clinicopathological and radiological metrics.

FINDINGS

Our Deep-CT model demonstrated robust stratification of patient survival of the MD Anderson testing set, which was validated in the external Stanford set. The performance of the Deep-CT model remained significant on subgroup analyses stratified by PD-L1, histology, age, sex, and race. In univariate analysis, Deep-CT outperformed the conventional risk factors, including histology, smoking status, and PD-L1 expression, and remained an independent predictor after multivariate adjustment. Integrating the Deep-CT model with conventional risk factors demonstrated significantly improved prediction performance, with overall survival C-index increases from 0·70 (clinical model) to 0·75 (composite model) during testing. On the other hand, the deep learning risk scores correlated with some radiomics features, but radiomics alone could not reach the performance level of deep learning, indicating that the deep learning model effectively captured additional imaging patterns beyond known radiomics features.

INTERPRETATION

This proof-of-concept study shows that automated profiling of radiographic scans through deep learning can provide orthogonal information independent of existing clinicopathological biomarkers, bringing the goal of precision immunotherapy for patients with NSCLC closer.

FUNDING

National Institutes of Health, Mark Foundation Damon Runyon Foundation Physician Scientist Award, MD Anderson Strategic Initiative Development Program, MD Anderson Lung Moon Shot Program, Andrea Mugnaini, and Edward L C Smith.

摘要

背景

仅有约 20-30%的非小细胞肺癌(NSCLC)患者能从免疫检查点抑制剂中获得持久获益。尽管基于组织的生物标志物(如 PD-L1)的性能不理想、组织可用性和肿瘤异质性有限,但影像学图像可能全面捕捉潜在的癌症生物学。我们旨在研究深度学习在胸部 CT 扫描中的应用,以得出对免疫检查点抑制剂反应的影像学特征,并评估其在临床背景下的附加价值。

方法

在这项回顾性建模研究中,我们从 2014 年 1 月 1 日至 2020 年 2 月 29 日,在 MD 安德森癌症中心和斯坦福大学招募了 976 名接受免疫检查点抑制剂治疗的转移性、EGFR/ALK 阴性 NSCLC 患者。我们构建并测试了一个基于预处理 CT(Deep-CT)的集成深度学习模型,以预测接受免疫检查点抑制剂治疗后的总生存期和无进展生存期。我们还评估了 Deep-CT 模型在现有临床病理和影像学指标背景下的附加预测价值。

结果

我们的 Deep-CT 模型在 MD 安德森测试集中对患者生存进行了稳健的分层,在外部斯坦福集集中得到了验证。在按 PD-L1、组织学、年龄、性别和种族分层的亚组分析中,Deep-CT 模型的性能仍然显著。在单变量分析中,Deep-CT 优于传统的危险因素,包括组织学、吸烟状况和 PD-L1 表达,并且在多变量调整后仍然是一个独立的预测因素。将 Deep-CT 模型与传统危险因素相结合,在测试中使总生存 C 指数从 0.70(临床模型)增加到 0.75(综合模型),显示出显著提高的预测性能。另一方面,深度学习风险评分与一些放射组学特征相关,但放射组学本身无法达到深度学习的性能水平,这表明深度学习模型有效地捕捉了超出已知放射组学特征的附加影像学模式。

解释

这项概念验证研究表明,通过深度学习对放射学扫描进行自动分析可以提供独立于现有临床病理生物标志物的正交信息,使 NSCLC 患者精准免疫治疗的目标更加接近。

资助

美国国立卫生研究院、马克基金会达蒙·鲁尼恩基金会医师科学家奖、MD 安德森战略计划发展项目、MD 安德森肺癌登月计划、安德烈亚·穆格纳尼和爱德华·L·C·史密斯。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/115f/10330920/1b3031b57e66/nihms-1913223-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验