Suppr超能文献

在嵌套病例对照研究中存在竞争风险时纵向生物标志物与生存结局的联合建模及其在TEDDY微生物组数据集上的应用

Joint Modeling of Longitudinal Biomarker and Survival Outcomes with the Presence of Competing Risk in Nested Case-Control Studies with Application to the TEDDY Microbiome Dataset.

作者信息

Zhao Yanan, Lee Ting-Fang, Zhou Boyan, Wang Chan, Schmidt Ann Marie, Liu Mengling, Li Huilin, Hu Jiyuan

机构信息

Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States.

Departments of Medicine, NYU Langone Health, New York, NY, United States.

出版信息

bioRxiv. 2025 May 28:2025.05.23.655653. doi: 10.1101/2025.05.23.655653.

Abstract

MOTIVATION

Large-scale prospective cohort studies collect longitudinal biospecimens alongside time-to-event outcomes to investigate biomarker dynamics in relation to disease risk. The nested case-control (NCC) design provides a cost-effective alternative to full cohort biomarker studies while preserving statistical efficiency. Despite advances in joint modeling for longitudinal and time-to-event outcomes, few approaches address the unique challenges posed by NCC sampling, non-normally distributed biomarkers, and competing survival outcomes.

RESULTS

Motivated by the TEDDY study, we propose "JM-NCC", a joint modeling framework designed for NCC studies with competing events. It integrates a generalized linear mixed-effects model for potentially non-normally distributed biomarkers with a cause-specific hazard model for competing risks. Two estimation methods are developed. fJM-NCC leverages NCC sub-cohort longitudinal biomarker data and full cohort survival and clinical metadata, while wJM-NCC uses only NCC sub-cohort data. Both simulation studies and an application to TEDDY microbiome dataset demonstrate the robustness and efficiency of the proposed methods.

摘要

动机

大规模前瞻性队列研究在收集事件发生时间结局的同时,还收集纵向生物样本,以研究生物标志物动态与疾病风险的关系。巢式病例对照(NCC)设计为全队列生物标志物研究提供了一种经济高效的替代方案,同时保持了统计效率。尽管在纵向和事件发生时间结局的联合建模方面取得了进展,但很少有方法能够应对NCC抽样、非正态分布生物标志物以及竞争生存结局带来的独特挑战。

结果

受TEDDY研究的启发,我们提出了“JM-NCC”,这是一个为具有竞争事件的NCC研究设计的联合建模框架。它将针对潜在非正态分布生物标志物的广义线性混合效应模型与针对竞争风险的特定病因风险模型相结合。开发了两种估计方法。fJM-NCC利用NCC子队列纵向生物标志物数据以及全队列生存和临床元数据,而wJM-NCC仅使用NCC子队列数据。模拟研究和对TEDDY微生物组数据集的应用均证明了所提出方法的稳健性和效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验