Suppr超能文献

对COVID-19多组学数据进行全基因组关联转录定量分析(eQTL),揭示疾病严重程度的遗传机制。

Integrated analysis of COVID-19 multi-omics data for eQTLs reveals genetic mechanisms underlying disease severity.

作者信息

Lee Jeongha, Jeon Eun Young, Yu Liyang, Jo Hye-Yeong, Kim Sang Cheol, Park Woong-Yang, Park Hyun-Young, Zhao Siming, Choi Murim

机构信息

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.

Department of Biomedical Data Science, Dartmouth Cancer Center, Dartmouth College, Hanover, NH, USA.

出版信息

bioRxiv. 2025 May 29:2024.12.18.629144. doi: 10.1101/2024.12.18.629144.

Abstract

The global pandemic caused by the SARS-CoV-2 virus provided an unprecedented opportunity to investigate genetic factors influencing the disease severity of the viral infection. Despite a plethora of recent research on both SARS-CoV-2 and COVID-19, few have taken a systems biology approach to address individual-level variation, especially based on non-European populations. Accordingly, we analyzed multi-omics data generated at three timepoints from 193 Korean COVID-19 patients with mild or severe symptoms, composed of whole genome sequencing, blood-based single-cell RNA-sequencing (2.15M cells), 195 cytokine profiles, and human leukocyte antigen (HLA) allele data. We identified expression quantitative trait loci (eQTLs), disease severity interacting eQTLs ( = 388), and disease progression interacting eQTLs ( = 945) for various cell types. We elucidated a complex regulatory mechanism involving genes and their targets, and identified genetic determinants of cytokine levels. Finally, we show how regulation of ieQTLs is established by upstream transcription factors (TFs), illustrating complex regulation of the ieQTL by a combined action of two TFs, which is potentially important in conferring differential severity. This study illuminates an efficient molecular interrogation framework that can be applied toward understanding infectious disease progression in individuals of different genotypes.

摘要

由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒引发的全球大流行提供了一个前所未有的机会,用以研究影响病毒感染疾病严重程度的遗传因素。尽管近期对SARS-CoV-2和新冠肺炎(COVID-19)已有大量研究,但很少有人采用系统生物学方法来解决个体水平的差异问题,尤其是基于非欧洲人群的研究。因此,我们分析了来自193名有轻、重症症状的韩国新冠肺炎患者在三个时间点生成的多组学数据,这些数据包括全基因组测序、基于血液的单细胞RNA测序(215万个细胞)、195种细胞因子谱以及人类白细胞抗原(HLA)等位基因数据。我们确定了各种细胞类型的表达数量性状基因座(eQTL)、与疾病严重程度相互作用的eQTL(n = 388)以及与疾病进展相互作用的eQTL(n = 945)。我们阐明了一个涉及 基因及其靶点的复杂调控机制,并确定了细胞因子水平的遗传决定因素。最后,我们展示了上游转录因子(TF)如何建立对ieQTL的调控,说明了两个TF的联合作用对ieQTL的复杂调控,这在赋予不同严重程度方面可能具有重要意义。这项研究阐明了一个有效的分子探究框架,可用于理解不同基因型个体的传染病进展情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9103/12154971/c53d7e2b6d71/nihpp-2024.12.18.629144v2-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验