Suppr超能文献

损伤与错配特征:泛癌突变过程的紧凑表示

Damage and Misrepair Signatures: Compact Representations of Pan-cancer Mutational Processes.

作者信息

Harrigan Caitlin F, Campbell Kieran R, Morris Quaid, Funnell Tyler

机构信息

Department of Computer Science, University of Toronto, Toronto, Canada.

Vector Institute, Toronto, Canada.

出版信息

bioRxiv. 2025 Jun 1:2025.05.29.656360. doi: 10.1101/2025.05.29.656360.

Abstract

Mutational signatures of single-base substitutions (SBSs) characterize somatic mutation processes which contribute to cancer development and progression. However, current mutational signatures do not distinguish the two independent steps that generate SBSs: the initial DNA damage followed by erroneous repair. To address this modelling gap we developed DAMUTA, a hierarchical Bayesian probabilistic model that infers separate signatures for each process, and captures their sample-specific interaction. We applied DAMUTA to 18,974 pan-cancer whole genome sequencing mutation catalogues from 23 cancer types and show that tissue-specificity in mutation patterns is driven largely by variability in damage processes. We also show that misrepair processes are predictive of DNA damage response deficiencies. Unlike existing approaches, DAMUTA distinguishes damage from misrepair contributions, and we demonstrate significant improvements over a mutational-burden baseline or signatures from the COSMIC database. Our analysis reveals a shared pan-cancer pattern of early clonal transition-mutations which shifts to a more uniform substitution pattern consistent with increased reliance on translesion synthesis for damage tolerance. DAMUTA thus generates a compact set of signatures which resolves redundancies of current signature models, disentangles the effects of DNA damage and misrepair processes, and facilitates improved stratification of tumours, while providing a framework towards a unified pan-cancer model of the cellular response to DNA damage.

摘要

单碱基替换(SBSs)的突变特征表征了导致癌症发生和发展的体细胞突变过程。然而,当前的突变特征无法区分产生SBSs的两个独立步骤:初始DNA损伤随后的错误修复。为了解决这一建模差距,我们开发了DAMUTA,这是一种分层贝叶斯概率模型,可推断每个过程的单独特征,并捕捉它们的样本特异性相互作用。我们将DAMUTA应用于来自23种癌症类型的18974个泛癌全基因组测序突变目录,结果表明突变模式中的组织特异性很大程度上由损伤过程的变异性驱动。我们还表明,错误修复过程可预测DNA损伤反应缺陷。与现有方法不同,DAMUTA区分了损伤和错误修复的贡献,并且我们证明其相较于突变负担基线或来自COSMIC数据库的特征有显著改进。我们的分析揭示了早期克隆转变突变的一种泛癌共享模式,该模式转变为一种更均匀的替换模式,这与对损伤耐受增加依赖跨损伤合成一致。因此,DAMUTA生成了一组紧凑的特征,解决了当前特征模型的冗余问题,解开了DNA损伤和错误修复过程的影响,并有助于改善肿瘤分层,同时提供了一个朝着细胞对DNA损伤反应的统一泛癌模型发展的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbdc/12154844/91ea3f39b78c/nihpp-2025.05.29.656360v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验