Hung Hsin-Yi, Corver Abel, Gordus Andrew
Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD.
Department of Biology, Lund University, Lund, Sweden.
bioRxiv. 2025 Jun 11:2025.06.08.658484. doi: 10.1101/2025.06.08.658484.
Animals flexibly adjust posture and movement in response to vibrational sensory input to extract information from dynamic environments. While sensorimotor transformations have been extensively studied in visual and somatosensory systems, their structure remains poorly understood in substrate-borne vibration sensing. Here, we combine high-resolution web vibration recordings with fine-scale behavioral tracking in the orb-weaving spider to dissect the sensorimotor basis of prey capture. Using unsupervised modeling, we identified discrete behavioral states that structure spider capture sequences, achieving over 83% classification accuracy. We then developed a predictive framework combining a linear-filtered generalized linear model (GLM) with a hidden Markov model (HMM) that robustly forecasts behavioral transitions across diverse prey vibration contexts. Notably, spiders exhibit context-dependent motor transitions-such as crouching and shaking-following decreases in prey vibrational power, consistent with active sensing behaviors that enhance signal detection. Furthermore, spiders reliably turn toward the web radius exhibiting the highest vibration amplitude during prey localization, demonstrating that amplitude alone predicts turning direction. These findings reveal a structured, predictive sensorimotor transformation linking external vibration cues to internal behavioral states. Our results highlight general principles of active sensing and closed-loop control in non-visual invertebrate systems, with broader implications for sensorimotor integration across species.
动物会根据振动感官输入灵活调整姿势和运动,以便从动态环境中提取信息。虽然感觉运动转换在视觉和躯体感觉系统中已得到广泛研究,但在基于底物的振动传感中,其结构仍知之甚少。在这里,我们将高分辨率的蛛网振动记录与圆蛛的精细行为跟踪相结合,以剖析猎物捕获的感觉运动基础。通过无监督建模,我们识别出构成蜘蛛捕获序列的离散行为状态,分类准确率超过83%。然后,我们开发了一个预测框架,将线性滤波广义线性模型(GLM)与隐马尔可夫模型(HMM)相结合,该框架能够可靠地预测在不同猎物振动情况下的行为转变。值得注意的是,蜘蛛会在猎物振动功率降低后表现出与环境相关的运动转变,如蹲伏和摇晃,这与增强信号检测的主动传感行为一致。此外,在猎物定位过程中,蜘蛛会可靠地转向振动幅度最高的蛛网半径方向,这表明仅振幅就能预测转向方向。这些发现揭示了一种将外部振动线索与内部行为状态联系起来的结构化、预测性感觉运动转换。我们的结果突出了非视觉无脊椎动物系统中主动传感和闭环控制的一般原则,对跨物种的感觉运动整合具有更广泛的意义。