Suppr超能文献

β-arrestin-2 通过磷脂酰肌醇 4,5-二磷酸的预激活的分子机制。

Molecular mechanism of β-arrestin-2 pre-activation by phosphatidylinositol 4,5-bisphosphate.

机构信息

School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.

出版信息

EMBO Rep. 2024 Oct;25(10):4190-4205. doi: 10.1038/s44319-024-00239-x. Epub 2024 Sep 6.

Abstract

Phosphorylated residues of G protein-coupled receptors bind to the N-domain of arrestin, resulting in the release of its C-terminus. This induces further allosteric conformational changes, such as polar core disruption, alteration of interdomain loops, and domain rotation, which transform arrestins into the receptor-activated state. It is widely accepted that arrestin activation occurs by conformational changes propagated from the N- to the C-domain. However, recent studies have revealed that binding of phosphatidylinositol 4,5-bisphosphate (PIP) to the C-domain transforms arrestins into a pre-active state. Here, we aimed to elucidate the mechanisms underlying PIP-induced arrestin pre-activation. We compare the conformational changes of β-arrestin-2 upon binding of PIP or phosphorylated C-tail peptide of vasopressin receptor type 2 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). Introducing point mutations on the potential routes of the allosteric conformational changes and analyzing these mutant constructs with HDX-MS reveals that PIP-binding at the C-domain affects the back loop, which destabilizes the gate loop and βXX to transform β-arrestin-2 into the pre-active state.

摘要

G 蛋白偶联受体磷酸化残基与 arrestin 的 N 结构域结合,导致其 C 端释放。这会引起进一步的变构构象变化,如极性核心破坏、结构域间环的改变和结构域旋转,从而将 arrestin 转化为受体激活状态。普遍认为 arrestin 的激活是通过从 N 结构域到 C 结构域的构象变化传播引起的。然而,最近的研究表明,磷脂酰肌醇 4,5-二磷酸(PIP)与 C 结构域的结合将 arrestin 转化为预激活状态。在这里,我们旨在阐明 PIP 诱导的 arrestin 预激活的机制。我们使用氢/氘交换质谱(HDX-MS)比较了 PIP 或血管加压素受体 2 磷酸化 C 尾肽结合后β-arrestin-2 的构象变化。在变构构象变化的潜在途径上引入点突变,并使用 HDX-MS 分析这些突变构建体表明,C 结构域上的 PIP 结合会影响后环,从而破坏门环和βXX,将β-arrestin-2 转化为预激活状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb49/11467438/70253095562f/44319_2024_239_Fig1_HTML.jpg

相似文献

1
Molecular mechanism of β-arrestin-2 pre-activation by phosphatidylinositol 4,5-bisphosphate.
EMBO Rep. 2024 Oct;25(10):4190-4205. doi: 10.1038/s44319-024-00239-x. Epub 2024 Sep 6.
2
Conformational Dynamics and Functional Implications of Phosphorylated β-Arrestins.
Structure. 2020 Mar 3;28(3):314-323.e3. doi: 10.1016/j.str.2019.12.008. Epub 2020 Jan 13.
3
Roles of the gate loop in β-arrestin-1 conformational dynamics and phosphorylated receptor interaction.
Structure. 2024 Sep 5;32(9):1358-1366.e3. doi: 10.1016/j.str.2024.05.014. Epub 2024 Jun 17.
4
Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide.
Nature. 2013 May 2;497(7447):137-41. doi: 10.1038/nature12120. Epub 2013 Apr 21.
5
Activation-dependent conformational changes in {beta}-arrestin 2.
J Biol Chem. 2004 Dec 31;279(53):55744-53. doi: 10.1074/jbc.M409785200. Epub 2004 Oct 22.
8
Crystal structure of pre-activated arrestin p44.
Nature. 2013 May 2;497(7447):142-6. doi: 10.1038/nature12133. Epub 2013 Apr 21.
9
Visualization of arrestin recruitment by a G-protein-coupled receptor.
Nature. 2014 Aug 14;512(7513):218-222. doi: 10.1038/nature13430. Epub 2014 Jun 22.
10
GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin.
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2301934120. doi: 10.1073/pnas.2301934120. Epub 2023 Jul 3.

引用本文的文献

2
A small molecule enhances arrestin-3 binding to the β-adrenergic receptor.
Commun Chem. 2025 Jul 1;8(1):194. doi: 10.1038/s42004-025-01581-4.
3
Membrane phosphoinositides allosterically tune β-arrestin dynamics to facilitate GPCR core engagement.
bioRxiv. 2025 Jun 8:2025.06.06.658200. doi: 10.1101/2025.06.06.658200.
4
Lipids modulate the dynamics of GPCR:β-arrestin interaction.
Nat Commun. 2025 May 29;16(1):4982. doi: 10.1038/s41467-025-59842-8.
5
A small molecule enhances arrestin-3 binding to the β-adrenergic receptor.
bioRxiv. 2024 Dec 13:2024.12.12.628161. doi: 10.1101/2024.12.12.628161.
6
Location-biased β-arrestin conformations direct GPCR signaling.
bioRxiv. 2024 Sep 26:2024.09.24.614742. doi: 10.1101/2024.09.24.614742.

本文引用的文献

1
Distinct activation mechanisms of β-arrestin-1 revealed by F NMR spectroscopy.
Nat Commun. 2023 Nov 29;14(1):7865. doi: 10.1038/s41467-023-43694-1.
2
Time resolved applications for Cryo-EM; approaches, challenges and future directions.
Curr Opin Struct Biol. 2023 Dec;83:102696. doi: 10.1016/j.sbi.2023.102696. Epub 2023 Sep 14.
3
Tail engagement of arrestin at the glucagon receptor.
Nature. 2023 Aug;620(7975):904-910. doi: 10.1038/s41586-023-06420-x. Epub 2023 Aug 9.
4
Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation.
Mol Cell. 2023 Jun 15;83(12):2091-2107.e7. doi: 10.1016/j.molcel.2023.04.025. Epub 2023 May 19.
5
Plasma membrane preassociation drives β-arrestin coupling to receptors and activation.
Cell. 2023 May 11;186(10):2238-2255.e20. doi: 10.1016/j.cell.2023.04.018. Epub 2023 May 4.
6
New insights into GPCR coupling and dimerisation from cryo-EM structures.
Curr Opin Struct Biol. 2023 Jun;80:102574. doi: 10.1016/j.sbi.2023.102574. Epub 2023 Mar 22.
7
Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics.
Cell. 2022 Nov 23;185(24):4560-4573.e19. doi: 10.1016/j.cell.2022.10.018. Epub 2022 Nov 10.
8
Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes.
Curr Opin Struct Biol. 2022 Aug;75:102406. doi: 10.1016/j.sbi.2022.102406. Epub 2022 Jun 20.
9
The Two Non-Visual Arrestins Engage ERK2 Differently.
J Mol Biol. 2022 Apr 15;434(7):167465. doi: 10.1016/j.jmb.2022.167465. Epub 2022 Jan 22.
10
Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2026491118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验