Suppr超能文献

利用预训练语言模型进行多标签分类,从安全网精神病医院的临床记录中进行自杀表型分析。

Suicide Phenotyping from Clinical Notes in Safety-Net Psychiatric Hospital Using Multi-Label Classification with Pre-Trained Language Models.

作者信息

Li Zehan, Hu Yan, Lane Scott, Selek Salih, Shahani Lokesh, Machado-Vieira Rodrigo, Soares Jair, Xu Hua, Liu Hongfang, Huang Ming

机构信息

MacWilliam School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX, USA.

Department of Psychiatry & Behavioral Sciences, McGovern Medical School, The University of Texas Health Science at Houston, Houston, TX, USA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2025 Jun 10;2025:260-269. eCollection 2025.

Abstract

Accurate identification and categorization of suicidal events can yield better suicide precautions, reducing operational burden, and improving care quality in high-acuity psychiatric settings. Pre-trained language models offer promise for identifying suicidality from unstructured clinical narratives. We evaluated the performance of four BERT-based models using two fine-tuning strategies (multiple single-label and single multi-label) for detecting coexisting suicidal events from 500 annotated psychiatric evaluation notes. The notes were labeled for suicidal ideation (SI), suicide attempts (SA), exposure to suicide (ES), and non-suicidal self-injury (NSSI). RoBERTa outperformed other models using binary relevance (acc=0.86, F1=0.78). MentalBERT (F1=0.74) also exceeded BioClinicalBERT (F1=0.72). RoBERTa fine-tuned with a single multi-label classifier further improved performance (acc=0.88, F1=0.81), highlighting that models pre-trained on domain-relevant data and the single multi-label classification strategy enhance efficiency and performance.

摘要

准确识别和分类自杀事件可以产生更好的自杀预防措施,减轻高急症精神科环境中的操作负担,并提高护理质量。预训练语言模型为从非结构化临床叙述中识别自杀倾向提供了希望。我们使用两种微调策略(多个单标签和单个多标签)评估了四个基于BERT的模型从500份带注释的精神科评估记录中检测共存自杀事件的性能。这些记录被标记为自杀意念(SI)、自杀未遂(SA)、接触自杀(ES)和非自杀性自伤(NSSI)。使用二元相关性时,RoBERTa的表现优于其他模型(准确率=0.86,F1=0.78)。MentalBERT(F1=0.74)也超过了BioClinicalBERT(F1=0.72)。使用单个多标签分类器微调的RoBERTa进一步提高了性能(准确率=0.88,F1=0.81),突出表明在领域相关数据上预训练的模型和单个多标签分类策略提高了效率和性能。

相似文献

本文引用的文献

2
Economic Cost of U.S. Suicide and Nonfatal Self-harm.美国自杀和非致命性自伤的经济成本。
Am J Prev Med. 2024 Jul;67(1):129-133. doi: 10.1016/j.amepre.2024.03.002. Epub 2024 Mar 12.
3
ScAN: Suicide Attempt and Ideation Events Dataset.ScAN:自杀未遂与自杀意念事件数据集。
Proc Conf. 2022 Jul;2022:1029-1040. doi: 10.18653/v1/2022.naacl-main.75.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验