Suppr超能文献

ScAN:自杀未遂与自杀意念事件数据集。

ScAN: Suicide Attempt and Ideation Events Dataset.

作者信息

Rawat Bhanu Pratap Singh, Kovaly Samuel, Pigeon Wilfred R, Yu Hong

机构信息

CICS, UMass-Amherst.

University of Rochester.

出版信息

Proc Conf. 2022 Jul;2022:1029-1040. doi: 10.18653/v1/2022.naacl-main.75.

Abstract

Suicide is an important public health concern and one of the leading causes of death worldwide. Suicidal behaviors, including suicide attempts (SA) and suicide ideations (SI), are leading risk factors for death by suicide. Information related to patients' previous and current SA and SI are frequently documented in the electronic health record (EHR) notes. Accurate detection of such documentation may help improve surveillance and predictions of patients' suicidal behaviors and alert medical professionals for suicide prevention efforts. In this study, we first built uicide ttempt and Ideatio Events (ScAN) dataset, a subset of the publicly available MIMIC III dataset spanning over 12+ EHR notes with 19+ annotated SA and SI events information. The annotations also contain attributes such as method of suicide attempt. We also provide a strong baseline model ScANER (uiide ttempt and Ideatio vents etreiver), a multi-task RoBERTa-based model with a to extract all the relevant suicidal behavioral evidences from EHR notes of an hospital-stay and, and a to identify the type of suicidal behavior (SA and SI) concluded during the patient's stay at the hospital. ScANER achieved a macro-weighted F1-score of 0.83 for identifying suicidal behavioral evidences and a macro F1-score of 0.78 and 0.60 for classification of SA and SI for the patient's hospital-stay, respectively. ScAN and ScANER are publicly available.

摘要

自杀是一个重要的公共卫生问题,也是全球主要死因之一。自杀行为,包括自杀未遂(SA)和自杀意念(SI),是自杀死亡的主要风险因素。与患者既往和当前的自杀未遂及自杀意念相关的信息经常记录在电子健康记录(EHR)笔记中。准确检测此类记录可能有助于改善对患者自杀行为的监测和预测,并提醒医疗专业人员进行自杀预防工作。在本研究中,我们首先构建了自杀未遂和意念事件(ScAN)数据集,它是公开可用的MIMIC III数据集的一个子集,涵盖12份以上的EHR笔记,包含19份以上标注的自杀未遂和自杀意念事件信息。这些标注还包含诸如自杀未遂方法等属性。我们还提供了一个强大的基线模型ScANER(自杀未遂和意念事件检索器),这是一个基于RoBERTa的多任务模型,用于从住院期间的EHR笔记中提取所有相关的自杀行为证据,以及用于识别患者住院期间得出的自杀行为类型(自杀未遂和自杀意念)。ScANER在识别自杀行为证据方面的宏观加权F1分数为0.83,在对患者住院期间的自杀未遂和自杀意念进行分类方面的宏观F1分数分别为0.78和0.60。ScAN和ScANER均可公开获取。

相似文献

1
ScAN: Suicide Attempt and Ideation Events Dataset.ScAN:自杀未遂与自杀意念事件数据集。
Proc Conf. 2022 Jul;2022:1029-1040. doi: 10.18653/v1/2022.naacl-main.75.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验