Atabaki Natalie N, Coral Daniel E, Pomares-Millan Hugo, Smith Kieran, Behjat Harry H, Koivula Robert W, Tura Andrea, Miller Hamish, Pinnick Katherine, Agudelo Leandro, Allin Kristine H, Brown Andrew A, Chabanova Elizaveta, Chmura Piotr J, Jacobsen Ulrik P, Dawed Adem Y, Elders Petra J M, Fernandez-Tajes Juan J, Forgie Ian M, Haid Mark, Hansen Tue H, Hansen Elizaveta L, Jones Angus G, Kokkola Tarja, Kalamajski Sebastian, Mahajan Anubha, McDonald Timothy J, McEvoy Donna, Muilwijk Mirthe, Tsirigos Konstantinos D, Vangipurapu Jagadish, van Oort Sabine, Vestergaard Henrik, Adamski Jerzy, Beulens Joline W, Brunak Søren, Dermitzakis Emmanouil T, Giordano Giuseppe N, Gupta Ramneek, Hansen Torben, Hart Leen T, Hattersley Andrew T, Hodson Leanne, Laakso Markku, Loos Ruth J F, Merino Jordi, Ohlsson Mattias, Pedersen Oluf, Ridderstråle Martin, Ruetten Hartmut, Rutters Femke, Schwenk Jochen M, Tomlinson Jeremy, Walker Mark, Yaghootkar Hanieh, Karpe Fredrik, McCarthy Mark I, Thomas Elizabeth Louise, Bell Jimmy D, Mari Andrea, Pavo Imre, Pearson Ewan R, Viñuela Ana, Franks Paul W
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Department of Clinical Science, Genetic and Molecular Epidemiology, Lund University Diabetes Centre, Helsingborg, Sweden.
medRxiv. 2025 Jun 2:2025.06.02.25328773. doi: 10.1101/2025.06.02.25328773.
To delineate organ-specific and systemic drivers of metabolic dysfunction-associated steatotic liver disease (MASLD), we applied integrative causal inference across clinical, imaging, and proteomic domains in individuals with and without type 2 diabetes (T2D).
We used Bayesian network analyses to quantify causal pathways linking adipose distribution, glycemia, and insulin dynamics with fatty liver using data from the IMI-DIRECT prospective cohort study. Measurements were made of glucose and insulin dynamics (using frequently-sampled metabolic challenge tests), MRI-derived abdominal and liver fat content, serological biomarkers, and Olink plasma proteomics from 331 adults with new-onset T2D and 964 adults free from diabetes at enrolment. The common protocols used in these two cohorts provided the opportunity for replication analyses to be performed. When the direction of the effect could not be determined with high probability through Bayesian networks, complementary two-sample Mendelian randomization (MR) was employed.
High basal insulin secretion rate (BasalISR) was identified as the primary causal driver of liver fat accumulation in both diabetes and non-diabetes. Excess visceral adipose tissue (VAT) was bidirectionally associated with liver fat, indicating a self-reinforcing metabolic loop. Basal insulin clearance (Clinsb) worsened as a consequence of liver fat accumulation to a greater degree before the onset of T2D. Out of 446 analysed proteins, 34 mapped to these metabolic networks and 27 were identified in the non-diabetes network, 18 in the diabetes network, and 11 were common between the two networks. Key proteins directly associated with liver fat included GUSB, ALDH1A1, LPL, IGFBP1/2, CTSD, HMOX1, FGF21, AGRP, and ACE2. Sex-stratified analyses revealed distinct proteomic drivers: GUSB and LEP were most predictive of liver fat in females and males, respectively.
Basal insulin hypersecretion is a modifiable, causal driver of MASLD, particularly prior to glycaemic decompensation. Our findings highlight a multifactorial, sex- and disease-stage-specific proteo-metabolic architecture of hepatic steatosis. Proteins such as GUSB, ALDH1A1, LPL, and IGFBPs warrant further investigation as potential biomarkers or therapeutic targets for MASLD prevention and treatment.
为了阐明代谢功能障碍相关脂肪性肝病(MASLD)的器官特异性和全身性驱动因素,我们在患有和未患有2型糖尿病(T2D)的个体中,对临床、影像学和蛋白质组学领域进行了综合因果推断。
我们使用贝叶斯网络分析,利用IMI-DIRECT前瞻性队列研究的数据,量化将脂肪分布、血糖和胰岛素动态与脂肪肝联系起来的因果途径。对331名新发T2D成年人和964名入组时无糖尿病的成年人进行了葡萄糖和胰岛素动态测量(使用频繁采样的代谢挑战试验)、MRI测量的腹部和肝脏脂肪含量、血清生物标志物以及Olink血浆蛋白质组学分析。这两个队列中使用的通用方案为进行重复分析提供了机会。当通过贝叶斯网络无法高概率确定效应方向时,采用了补充性两样本孟德尔随机化(MR)方法。
高基础胰岛素分泌率(BasalISR)被确定为糖尿病和非糖尿病患者肝脏脂肪堆积的主要因果驱动因素。内脏脂肪组织(VAT)过多与肝脏脂肪呈双向关联,表明存在一个自我强化的代谢循环。在T2D发病前,基础胰岛素清除率(Clinsb)因肝脏脂肪堆积而恶化的程度更大。在分析的446种蛋白质中,34种映射到这些代谢网络,27种在非糖尿病网络中被鉴定出来,18种在糖尿病网络中被鉴定出来,11种在两个网络中共有。与肝脏脂肪直接相关的关键蛋白质包括GUSB、ALDH1A1、LPL、IGFBP1/2、CTSD、HMOX1、FGF21、AGRP和ACE2。按性别分层分析揭示了不同的蛋白质组驱动因素:GUSB和LEP分别是女性和男性肝脏脂肪的最具预测性的因素。
基础胰岛素分泌过多是MASLD的一个可改变的因果驱动因素,尤其是在血糖失代偿之前。我们的研究结果突出了肝脂肪变性的多因素、性别和疾病阶段特异性蛋白质代谢结构。GUSB、ALDH1A1、LPL和IGFBPs等蛋白质作为MASLD预防和治疗的潜在生物标志物或治疗靶点值得进一步研究。