Suppr超能文献

双参数前列腺MRI中的深度学习重建:对定性和影像组学分析的影响。

Deep learning reconstruction in biparametric prostate MRI: Impact on qualitative and radiomics analyses.

作者信息

Dana Jérémy, McNabb Evan, Castro Juan, Al-Qanoobi Ibtisam, Omiya Yoshie, Ah-Lan Kenny, Fortier Véronique, Artho Giovanni, Reinhold Caroline, Gauvin Simon

机构信息

McGill University, Department of Diagnostic Radiology, Montréal, Canada.

Research Institute of the McGill University Health Centre, Augmented Intelligence & Precision Health Laboratory (AIPHL), Montréal, Canada.

出版信息

Res Diagn Interv Imaging. 2025 May 22;14:100059. doi: 10.1016/j.redii.2025.100059. eCollection 2025 Jun.

Abstract

OBJECTIVE

To assess the impact of a commercially available deep learning reconstruction (DLR) algorithm on qualitative and radiomics analyses in prostate MRI.

METHODS

This single-centre retrospective cohort included 25 consecutive patients who underwent a prostate MRI (1.5 T) in 2022. T2-weighted (T2WI), diffusion-weighted (DWI; b = 50, 1000, extrapolated 2000 s/mm) and apparent diffusion coefficient (ADC) images were reconstructed using DLR and standard (non-DLR) techniques. The two sets were mixed and blind-reviewed independently by six radiologists. Images were qualitatively scored according to PI-QUAL score, overall image quality, diagnostic confidence, anatomical conspicuity, artifact, and noise. Transition and peripheral zones were segmented and radiomics features extracted from region-of-interests using Pyradiomics package. Qualitative criteria and radiomics were compared using a pairwise Wilcoxon signed-rank test.

RESULTS

PI-QUAL score was not significantly different ( = 0.32). Overall image quality was not significantly different ( = 0.21 on T2WI and 0.56 on DWI/ADC). Noise was lower on DLR images for T2WI ( < 0.01) and DWI/ADC ( = 0.04). Diagnostic confidence in excluding clinically significant cancer (PI-RADS ≥ 3) in the transition zone was lower with DLR images (p = 0.02). In the transition zone, 89/93 (96 %) of the radiomics features were significantly different between non-DLR and DLR images on T2WI, 68/93 (73 %) on DWI b-2000 s/mm, and 55/93 (59 %) on ADC images. In the peripheral zone, 91/93 (98 %) were significantly different on T2WI, 50/93 (54 %) on DWI b-2000 s/mm, and 70/93 (75 %) on ADC images.

CONCLUSION

Radiomics features were significantly different on DLR images which should encourage caution for clinical and research purposes. DLR algorithm decreases noise while preserving overall image quality.

摘要

目的

评估一种商用深度学习重建(DLR)算法对前列腺MRI定性分析和影像组学分析的影响。

方法

本单中心回顾性队列研究纳入了2022年连续接受前列腺MRI(1.5T)检查的25例患者。使用DLR和标准(非DLR)技术重建T2加权(T2WI)、扩散加权(DWI;b=50、1000、外推2000 s/mm²)和表观扩散系数(ADC)图像。将这两组图像混合后由6名放射科医生独立进行盲法评估。根据PI-QUAL评分、整体图像质量、诊断置信度、解剖结构清晰度、伪影和噪声对图像进行定性评分。对移行区和外周区进行分割,并使用Pyradiomics软件包从感兴趣区域提取影像组学特征。使用配对Wilcoxon符号秩检验比较定性标准和影像组学特征。

结果

PI-QUAL评分无显著差异(P=0.32)。整体图像质量无显著差异(T2WI上P=0.21,DWI/ADC上P=0.56)。T2WI(P<0.01)和DWI/ADC(P=0.04)的DLR图像噪声更低。DLR图像对移行区排除临床显著性癌症(PI-RADS≥3)的诊断置信度较低(P=0.02)。在移行区,T2WI上非DLR和DLR图像之间93个影像组学特征中的89个(96%)有显著差异,DWI b值为2000 s/mm²时为68/93(73%),ADC图像上为55/93(59%)。在外周区,T2WI上91/93(98%)有显著差异,DWI b值为2000 s/mm²时为50/93(54%),ADC图像上为70/93(75%)。

结论

DLR图像上的影像组学特征有显著差异,这在临床和研究中应谨慎对待。DLR算法在保留整体图像质量的同时降低了噪声。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e62a/12150108/dc35d42be14a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验