Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
Joint Research Laboratory of Advanced Medicine Imaging, Fujita Health University School of Medicine, Toyoake, Japan.
Diagn Interv Radiol. 2023 Sep 5;29(5):664-673. doi: 10.4274/dir.2023.232149. Epub 2023 Aug 9.
Deep learning reconstruction (DLR) to improve imaging quality has already been introduced, but no studies have evaluated the effect of DLR on diffusion-weighted imaging (DWI) or intravoxel incoherent motion (IVIM) in or studies. The purpose of this study was to determine the effect of DLR for magnetic resonance imaging (MRI) in terms of image quality improvement, apparent diffusion coefficient (ADC) assessment, and IVIM index evaluation on DWI through and studies.
For the study, a phantom recommended by the Quantitative Imaging Biomarkers Alliance was scanned and reconstructed with and without DLR, and 15 patients with brain tumors with normal-appearing gray and white matter examined using IVIM and reconstructed with and without DLR were included in the study. The ADCs of all phantoms for DWI with and without DLR, as well as the coefficient of variation percentage (CV%), and ADCs and IVIM indexes for each participant, were evaluated based on DWI with and without DLR by means of region-of-interest measurements. For the study, using the mean ADCs for all phantoms, a t-test was adopted to compare DWI with and without DLR. For the study, a Wilcoxon signed-rank test was used to compare the CV% between the two types of DWI. In addition, the Wilcoxon signed-rank test was used to compare the ADC, true diffusion coefficient (), pseudodiffusion coefficient (), and percentage of water molecules in micro perfusion within 1 voxel () with and without DLR; the limits of agreement of each parameter were determined through a Bland-Altman analysis.
The study identified no significant differences between the ADC values for DWI with and without DLR ( > 0.05), and the CV% was significantly different for DWI with and without DLR ( < 0.05) when values ≥250 s/mm were used. The study revealed that and with and without DLR were significantly different ( < 0.001). The limits of agreement of the ADC, , and values for DWI with and without DLR were determined as 0.00 ± 0.51 × 10, 0.00 ± 0.06 × 10, and 1.13 ± 4.04 × 10-3 mm/s, respectively. The limits of agreement of the f values for DWI with and without DLR were determined as -0.01 ± 0.07.
Deep learning reconstruction for MRI has the potential to significantly improve DWI quality at higher values. It has some effect on and f values in the IVIM index evaluation, but ADC and values are less affected by DLR.
深度学习重建(DLR)已被引入以提高图像质量,但尚无研究评估 DLR 对 [或] 研究中扩散加权成像(DWI)或体素内不相干运动(IVIM)的影响。本研究的目的是通过 [或] 研究,确定 DLR 对磁共振成像(MRI)的影响,包括图像质量改善、表观扩散系数(ADC)评估和 DWI 上 IVIM 指数评估。
对于[研究],使用定量成像生物标志物联盟推荐的体模进行扫描,并在有和没有 DLR 的情况下进行重建,并且包括 15 名患有正常灰质和白质的脑肿瘤患者,使用 IVIM 进行检查,并在有和没有 DLR 的情况下进行重建。根据 ROI 测量,评估所有体模在有和没有 DLR 的情况下的 DWI 的 ADC 值、变异系数百分比(CV%)以及每个参与者的 ADC 值和 IVIM 指数。对于[研究],使用所有体模的平均 ADC 值,采用 t 检验比较有和没有 DLR 的 DWI。对于[研究],采用 Wilcoxon 符号秩检验比较两种类型的 DWI 之间的 CV%。此外,使用 Wilcoxon 符号秩检验比较有和没有 DLR 的 ADC、真实扩散系数()、伪扩散系数()和 1 个体素内的水分子百分比();通过 Bland-Altman 分析确定每个参数的一致性界限。
[研究]发现,当 [值] ≥250 s/mm 时,有和没有 DLR 的 DWI 的 ADC 值之间没有显著差异(>0.05),而 DWI 有和没有 DLR 的 CV%之间有显著差异(<0.05)。[研究]表明,有和没有 DLR 的 和 有显著差异(<0.001)。有和没有 DLR 的 DWI 的 ADC、、和 f 值的一致性界限分别确定为 0.00 ± 0.51×10、0.00 ± 0.06×10 和 1.13 ± 4.04×10-3mm/s。有和没有 DLR 的 DWI 的 f 值的一致性界限确定为-0.01 ± 0.07。
MRI 的 DLR 具有显著提高更高 [值] 下 DWI 质量的潜力。它对 IVIM 指数评估中的 和 f 值有一定影响,但 DLR 对 ADC 和 值的影响较小。