Suppr超能文献

源自天然前驱体的先进微孔沸石和介孔材料作为棕榈油生产生物喷气燃料中磷化铁催化剂载体的潜力()。

Potential of advanced microporous zeolites and mesoporous materials derived from natural precursors as supports for iron phosphide catalysts in bio-jet fuel production from palm oil ().

作者信息

Tanwongwan Worapak, Sartsamai Ruttasart, Kaewmeesri Rungnapa, Faungnawakij Kajornsak, Chollacoop Nuwong, Assabumrungrat Suttichai, Fuji Masayoshi, Eiad-Ua Apiluck

机构信息

School of Integrated Innovative Technology, King Mongkut's Institute of Technology Ladkrabang (KMITL) Ladkrabang Bangkok 10520 Thailand

National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Khlong Luang Pathum Thani 12120 Thailand.

出版信息

RSC Adv. 2025 Jun 10;15(25):19714-19725. doi: 10.1039/d5ra02133b.

Abstract

Iron phosphide (FeP) has emerged as an efficient catalyst for converting palm oil, a biomass-derived feedstock, into bio-jet fuel through the hydrocracking process. The catalytic performance of FeP is strongly influenced by the choice of support material. In this study, microporous MWW-type zeolites (MCM-22 and MCM-36) and mesoporous materials (MCM-41 and MCM-48) were successfully synthesized from entirely natural precursors, silica derived from rice husk and aluminosilicate gel extracted from kaolin clay, a hydrothermal method, and employed as supports for FeP catalysts. Among these materials, MCM-22 zeolite exhibited the highest microporosity, followed by zeolite MCM-36, resulting in superior acidity compared to the mesoporous materials, MCM-41 and MCM-48. FeP supported on MCM-22 (FeP/MCM-22) demonstrated the best catalytic performance, liquid hydrocarbon yield (∼33%), and bio-jet selectivity (∼78%) were obtained, outperforming FeP/MCM-36, FeP/MCM-41, and FeP/MCM-48. This is due to its high surface area of micropores (∼187 m g) and the excellent acidity of this zeolite, which helped prevent FeP overloading and promote uniform metal distribution. Furthermore, it exhibited remarkable stability and reusability, with performance improving over three consecutive reaction cycles, LHCs yield increasing to 50% and bio-jet selectivity stabilizing at about 83%, attributed to enhanced acidity accessibility and progressive formation of the FeP active phase.

摘要

磷化铁(FeP)已成为一种高效催化剂,可通过加氢裂化过程将生物质衍生原料棕榈油转化为生物喷气燃料。FeP的催化性能受载体材料选择的强烈影响。在本研究中,微孔MWW型沸石(MCM - 22和MCM - 36)和介孔材料(MCM - 41和MCM - 48)成功地由完全天然的前体合成,即从稻壳衍生的二氧化硅和从高岭土粘土中提取的硅铝酸盐凝胶,采用水热法,并用作FeP催化剂的载体。在这些材料中,MCM - 22沸石表现出最高的微孔率,其次是沸石MCM - 36,与介孔材料MCM - 41和MCM - 48相比,具有更高的酸度。负载在MCM - 22上的FeP(FeP/MCM - 22)表现出最佳的催化性能,获得了液态烃产率(约33%)和生物喷气选择性(约78%),优于FeP/MCM - 36、FeP/MCM - 41和FeP/MCM - 48。这是由于其高微孔表面积(约187 m²/g)和该沸石优异的酸度,有助于防止FeP过载并促进金属均匀分布。此外,它表现出显著的稳定性和可重复使用性,在连续三个反应循环中性能得到改善,液态烃产率增加到50%,生物喷气选择性稳定在约83%,这归因于酸度可及性的增强和FeP活性相的逐步形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd1b/12151145/6cb9e51459b4/d5ra02133b-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验