Palomero Orhi Esarte, Guadarrama Eduardo, DeCaen Paul G
Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60061.
The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2421362122. doi: 10.1073/pnas.2421362122. Epub 2025 Jun 12.
PKD2 is a member of the polycystin subfamily of transient receptor potential (TRP) ion channel subunits which traffic and function in primary cilia organelle membranes. Millions of individuals carry pathogenic genetic variants in PKD2 that cause a life-threatening condition called autosomal dominant polycystic kidney disease (ADPKD). Although ADPKD is a common monogenetic disorder, there is no drug cure or available therapeutics which address the underlying channel dysregulation. Furthermore, the structural and mechanistic impacts of most disease-causing variants are uncharacterized. Using direct cilia electrophysiology, cryogenic electron microscopy (cryo-EM), and superresolution imaging, we have found mechanistic differences in channel dysregulation caused by three germline missense variants located in PKD2's pore helix 1. Variant C632R reduces protein thermal stability, resulting in impaired channel assembly and abolishes primary cilia trafficking. In contrast, variants F629S and R638C retain native cilia trafficking but exhibit gating defects. Cryo-EM structures (2.7 to 2.8 Å resolution) indicate loss of critical pore helix interactions which precipitate allosteric collapse of the channels inner gate. Results demonstrate how ADPKD-causing mutations cause mechanistically divergent and ranging impacts on PKD2 function, despite their shared structural proximity. These unexpected findings highlight the need for structural and biophysical characterization of polycystin variants, which will guide rational drug development of ADPKD therapeutics.
PKD2是瞬时受体电位(TRP)离子通道亚基多囊蛋白亚家族的成员,在初级纤毛细胞器膜中运输并发挥功能。数以百万计的人携带PKD2的致病基因变异,这些变异会导致一种危及生命的疾病,称为常染色体显性多囊肾病(ADPKD)。尽管ADPKD是一种常见的单基因疾病,但目前尚无药物治疗方法或可用疗法来解决潜在的通道失调问题。此外,大多数致病变异的结构和机制影响尚未明确。通过直接纤毛电生理学、低温电子显微镜(cryo-EM)和超分辨率成像,我们发现了位于PKD2孔螺旋1中的三种种系错义变异导致通道失调的机制差异。变异C632R降低了蛋白质的热稳定性,导致通道组装受损,并消除了初级纤毛运输。相比之下,变异F629S和R638C保留了天然的纤毛运输,但表现出门控缺陷。低温电子显微镜结构(分辨率为2.7至2.8埃)表明关键的孔螺旋相互作用丧失,这导致通道内门的变构塌陷。结果表明,尽管导致ADPKD的突变在结构上相近,但它们对PKD2功能的影响在机制上存在差异且范围广泛。这些意外发现凸显了对多囊蛋白变异进行结构和生物物理表征的必要性,这将指导ADPKD治疗药物的合理开发。