Qi Cheng-Zhang, Min Peng, Zhou Xinfeng, Jin Meng, Sun Xia, Wu Jianjun, Liu Yanjun, Zhang Hao-Bin, Yu Zhong-Zhen
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
Center for Nanomaterials and Nanocomposites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
Nanomicro Lett. 2025 Jun 12;17(1):291. doi: 10.1007/s40820-025-01800-6.
Although multifunctional electromagnetic interference (EMI) shielding materials with ultrahigh electromagnetic wave absorption are highly required to solve increasingly serious electromagnetic radiation and pollution and meet multi-scenario applications, EMI shielding materials usually cause a lot of reflection and have a single function. To realize the broadband absorption-dominated EMI shielding via absorption-reflection-reabsorption mechanisms and the interference cancelation effect, multifunctional asymmetric bilayer aerogels are designed by sequential printing of a MXene-graphene oxide (MG) layer with a MG emulsion ink and a conductive MXene layer with a MXene ink and subsequent freeze-drying for generating and solidifying numerous pores in the aerogels. The top MG layer of the asymmetric bilayer aerogel optimizes impedance matching and achieves re-absorption, while the bottom MXene layer enhances the reflection of the incident electromagnetic waves. As a result, the asymmetric bilayer aerogel achieves an average absorption coefficient of 0.95 in the X-band and shows the tunable absorption ability to electromagnetic wave in the ultrawide band from 8.2 to 40 GHz. Finite element simulations substantiate the effectiveness of the asymmetric bilayer aerogel for electromagnetic wave absorption. The multifunctional bilayer aerogels exhibit hydrophobicity, thermal insulation and Joule heating capacities and are efficient in solar-thermal/electric heating, infrared stealth, and clean-up of spilled oil.
尽管解决日益严重的电磁辐射和污染问题并满足多场景应用迫切需要具有超高电磁波吸收能力的多功能电磁干扰(EMI)屏蔽材料,但EMI屏蔽材料通常会产生大量反射且功能单一。为了通过吸收-反射-再吸收机制和干扰消除效应实现以宽带吸收为主的EMI屏蔽,通过依次用MXene-氧化石墨烯(MG)乳液油墨印刷MG层和用MXene油墨印刷导电MXene层,随后进行冷冻干燥以在气凝胶中产生并固化大量孔隙,设计了多功能不对称双层气凝胶。不对称双层气凝胶的顶部MG层优化了阻抗匹配并实现了再吸收,而底部MXene层增强了入射电磁波的反射。结果,不对称双层气凝胶在X波段实现了0.95的平均吸收系数,并在8.2至40 GHz的超宽带内显示出对电磁波的可调吸收能力。有限元模拟证实了不对称双层气凝胶对电磁波吸收的有效性。多功能双层气凝胶具有疏水性、隔热性和焦耳热能力,在太阳能热/电加热、红外隐身和溢油清理方面表现出色。