Zhou Xinfeng, Min Peng, Liu Yue, Jin Meng, Yu Zhong-Zhen, Zhang Hao-Bin
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Science. 2024 Sep 13;385(6714):1205-1210. doi: 10.1126/science.adp6581. Epub 2024 Sep 12.
Traditional electromagnetic interference-shielding materials are predominantly electrically conductive, posing short-circuit risks when applied in highly integrated electronics. To overcome this dilemma, we propose a microcapacitor-structure model comprising conductive fillers as polar plates and intermediate polymer as a dielectric layer to develop insulating electromagnetic interference-shielding polymer composites. The electron oscillation in plates and dipole polarization in dielectric layers contribute to the reflection and absorption of electromagnetic waves. Guided by this, the synergistic nonpercolation densification and dielectric enhancement enable our composite to combine high resistivity, shielding performance, and thermal conductivity. Its insulating feature allows for direct potting into the crevices among assembled components to address electromagnetic compatibility and heat-accumulation issues.
传统的电磁干扰屏蔽材料主要是导电的,在应用于高度集成的电子产品时存在短路风险。为了克服这一困境,我们提出了一种微电容器结构模型,该模型由导电填料作为极板,中间聚合物作为介电层,以开发绝缘电磁干扰屏蔽聚合物复合材料。极板中的电子振荡和介电层中的偶极极化有助于电磁波的反射和吸收。在此指导下,协同的非渗流致密化和介电增强使我们的复合材料兼具高电阻率、屏蔽性能和热导率。其绝缘特性允许直接灌封到组装部件之间的缝隙中,以解决电磁兼容性和热积累问题。