Ham Su Jin, Bang Sunhoe, Woo Daihn, Jo Jae-Yoon, Yoo Takwon, Yoon Eunju, Kyoung Yeonju, Baek Daehyun, Kim Jong-Seo, Chung Jongkyeong
Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea.
Mol Cell. 2025 Jun 19;85(12):2287-2302.e9. doi: 10.1016/j.molcel.2025.05.021. Epub 2025 Jun 11.
Here, we explore the potential involvement of fumarate, a metabolite generated from the TCA cycle, as a key regulator of PINK1-Parkin-mediated mitophagy. Fumarate engages in a process called succination, forming S-(2-succino) cysteine with protein cysteine residues. Our research demonstrates that this modification specifically targets the sulfhydryl group of cysteine 323 and 451 residues of human Parkin, leading to the inhibition of its mitochondrial localization and E3 ligase activity, thereby impeding PINK1-Parkin-mediated mitophagy. Notably, our investigation reveals that the succinatable cysteines in human Parkin are not conserved in invertebrates, including Drosophila. To assess the functional impact of Parkin succination, we generate Parkin knockin flies with succinatable cysteines. These flies exhibit robust Parkinson's disease (PD)-related phenotypes when exposed to elevated fumarate levels. Collectively, our findings underscore the significance of fumarate as an endogenous regulator of PINK1-Parkin-mediated mitophagy, offering insights into the intricate interplay between mitochondrial metabolic activities and PD pathology.
在这里,我们探讨了延胡索酸(一种三羧酸循环产生的代谢产物)作为PINK1-Parkin介导的线粒体自噬关键调节因子的潜在作用。延胡索酸参与一个称为琥珀酰化的过程,与蛋白质半胱氨酸残基形成S-(2-琥珀酰)半胱氨酸。我们的研究表明,这种修饰特异性地靶向人Parkin的半胱氨酸323和451残基的巯基,导致其线粒体定位和E3连接酶活性受到抑制,从而阻碍PINK1-Parkin介导的线粒体自噬。值得注意的是,我们的研究发现,人Parkin中可发生琥珀酰化的半胱氨酸在包括果蝇在内的无脊椎动物中并不保守。为了评估Parkin琥珀酰化的功能影响,我们构建了具有可发生琥珀酰化半胱氨酸的Parkin基因敲入果蝇。当暴露于升高的延胡索酸水平时,这些果蝇表现出强烈的帕金森病(PD)相关表型。总的来说,我们的研究结果强调了延胡索酸作为PINK1-Parkin介导的线粒体自噬内源性调节因子的重要性,为线粒体代谢活动与PD病理之间的复杂相互作用提供了见解。