Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.
PLoS Genet. 2010 Dec 2;6(12):e1001229. doi: 10.1371/journal.pgen.1001229.
PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1.
PTEN 诱导的激酶 1(PINK1)是一种参与线粒体稳态的基因产物,它是早发性帕金森病(PD)的致病基因。另一早发性 PD 基因产物 Parkin,根据果蝇中的遗传研究,被认为是位于 PINK1 信号通路的下游发挥作用。PINK1 是一种丝氨酸/苏氨酸激酶,具有预测的线粒体靶序列和 N 端的可能跨膜结构域,而 Parkin 是一种具有泛素连接酶(E3)活性的环指蛋白。然而,PINK1 和 Parkin 如何调节线粒体活性在很大程度上仍是未知的。为了探索 PINK1 和 Parkin 之间相互作用的分子机制,我们从人培养细胞中生化纯化了 PINK1 结合蛋白,并使用果蝇 PINK1(dPINK1)模型筛选这些结合蛋白的编码基因,以分离参与 PINK1 病理学的分子。在这里,我们报告了一种与 PINK1 结合的线粒体蛋白 PGAM5,可调节 PINK1 通路。果蝇 PGAM5(dPGAM5)的缺失可以抑制 dPINK1 失活引起的肌肉退化、运动缺陷和寿命缩短,这归因于线粒体退化。然而,dPGAM5 的缺失不能调节 parkin 突变体果蝇的表型。相反,dPGAM5 的异位表达加剧了 dPINK1 和果蝇 parkin(dParkin)的表型。这些结果表明,PGAM5 负调控与维持线粒体相关的 PINK1 通路,此外,PGAM5 位于 PINK1 和 Parkin 之间,或者在 PINK1 下游独立于 Parkin 发挥作用。