Quel Natália G, Rosa Leonardo T, Antonio Larissa M, Pinheiro Glaucia M S, Barbosa Leandro R S, Houry Walid A, Ramos Carlos H I
Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioimage and Structural Biology INBEB, Brazil.
Departament of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil.
Int J Biol Macromol. 2025 Jul;318(Pt 3):145175. doi: 10.1016/j.ijbiomac.2025.145175. Epub 2025 Jun 10.
RUVBL1 and RUVBL2 proteins assemble into a heterohexameric ring and are essential for DNA repair in prokaryotes and chromatin homeostasis in eukaryotes. These proteins function as potential chaperones and ATPases. While most studies on eukaryotic RUVBL1/2 proteins have focused on human and yeast orthologs, they have revealed notable differences in conformational dynamics, protein interactions, and ATPase activity between these species. By investigating orthologs in other eukaryotic organisms, conserved features of RUVBL1/2 structure and function can be determined. In this study, we analyzed the genome of Aedes aegypti, a dipteran insect and a vector of Dengue, Zika, and Chikungunya viruses, to identify putative RUVBL1/2 family members. We identified protein sequences corresponding to RUVBL1 and RUVBL2, here named as AaRUVBL1 and AaRUVBL2. Purified recombinant AaRUVBL1/2 was properly folded and formed a hetero-dodecamer in solution. The complex exhibited enzymatic ATPase activity, confirming that these proteins are bona fide AAA+ ATPases. However, mutational analysis revealed that ATPase activity requires both AaRUVBL1 and AaRUVBL2, in contrast to the human ortholog, where RUVBL1 and RUVBL2 alone are active ATPases. To characterize the structure of the AaRUVBL1/2 complex, we combined SAXS and Cryo-EM techniques. Our findings indicate that the complex adopts a dodecameric barrel-shaped complex with a maximum dimension of ∼16 nm. Single particle CryoEM analysis revealed a high degree of conformational heterogeneity, both between hexamer rings linked via the DII domains and among each hexameric ring. Overall, these findings contribute to a broader understanding of RUVBL1/2 proteins, particularly as this represents only the second structurally and functionally characterized RUVBL complex within the Animalia filum.
RUVBL1和RUVBL2蛋白组装成异源六聚体环,对原核生物的DNA修复和真核生物的染色质稳态至关重要。这些蛋白作为潜在的伴侣蛋白和ATP酶发挥作用。虽然大多数关于真核生物RUVBL1/2蛋白的研究都集中在人类和酵母直系同源物上,但这些研究揭示了这些物种在构象动力学、蛋白相互作用和ATP酶活性方面存在显著差异。通过研究其他真核生物中的直系同源物,可以确定RUVBL1/2结构和功能的保守特征。在本研究中,我们分析了埃及伊蚊(一种双翅目昆虫,也是登革热、寨卡病毒和基孔肯雅病毒的传播媒介)的基因组,以鉴定推定的RUVBL1/2家族成员。我们鉴定出了与RUVBL1和RUVBL2对应的蛋白序列,在此将其命名为AaRUVBL1和AaRUVBL2。纯化的重组AaRUVBL1/2正确折叠并在溶液中形成异源十二聚体。该复合物表现出酶促ATP酶活性,证实这些蛋白是真正的AAA + ATP酶。然而,突变分析表明,与人类直系同源物不同,人类直系同源物中RUVBL1和RUVBL2单独就是活性ATP酶,而AaRUVBL1/2的ATP酶活性需要AaRUVBL1和AaRUVBL2两者。为了表征AaRUVBL1/2复合物的结构,我们结合了小角X射线散射(SAXS)和冷冻电镜(Cryo-EM)技术。我们的研究结果表明,该复合物采用最大尺寸约为16纳米的十二聚体桶状复合物。单颗粒冷冻电镜分析揭示了通过DII结构域连接的六聚体环之间以及每个六聚体环内部都存在高度的构象异质性。总体而言,这些发现有助于更广泛地理解RUVBL1/2蛋白,特别是因为这代表了动物界中第二个在结构和功能上得到表征的RUVBL复合物。