Aymerich María, García-Baizán Alejandra, Franco Paolo Niccolò, González Mariña, San Miguel Fraile Pilar, Ortiz-Rey José Antonio, Otero-García Milagros
Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain.
Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain.
Diagnostics (Basel). 2025 May 26;15(11):1337. doi: 10.3390/diagnostics15111337.
: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cancer, and its prognosis is closely linked to the International Society of Urological Pathology (ISUP) grade. While histopathological evaluation remains the gold standard for grading, non-invasive methods, such as radiomics, offer potential for automated classification. This study aims to develop a radiomics-based machine learning model for the ISUP grade classification of ccRCC using nephrographic-phase CT images, with an emphasis on model interpretability through SHAP (SHapley Additive exPlanations) values. : To develop and interpret a radiomics-based machine learning model for classifying ISUP grade in clear cell renal cell carcinoma (ccRCC) using nephrographic-phase CT images. : This retrospective study included 109 patients with histopathologically confirmed ccRCC. Radiomic features were extracted from the nephrographic-phase CT scans. Feature robustness was evaluated via intraclass correlation coefficient (ICC), followed by redundancy reduction using Pearson correlation and minimum Redundancy Maximum Relevance (mRMR). Logistic regression, support vector machine, and random forest classifiers were trained using 8-fold cross-validation. SHAP values were computed to assess feature contribution. : The logistic regression model achieved the highest classification performance, with an accuracy of 82% and an AUC of 0.86. SHAP analysis identified major axis length, busyness, and large area emphasis as the most influential features. These variables represented shape and texture information, critical for distinguishing between high and low ISUP grades. : A radiomics-based logistic regression model using nephrographic-phase CT enables accurate, non-invasive classification of ccRCC according to ISUP grade. The use of SHAP values enhances model transparency, supporting clinical interpretability and potential adoption in precision oncology.
透明细胞肾细胞癌(ccRCC)是肾癌最常见的亚型,其预后与国际泌尿病理学会(ISUP)分级密切相关。虽然组织病理学评估仍然是分级的金标准,但诸如影像组学等非侵入性方法为自动分类提供了可能。本研究旨在利用肾实质期CT图像开发一种基于影像组学的机器学习模型,用于ccRCC的ISUP分级分类,重点是通过SHAP(SHapley加性解释)值实现模型可解释性。:开发并解释一种基于影像组学的机器学习模型,用于使用肾实质期CT图像对透明细胞肾细胞癌(ccRCC)的ISUP分级进行分类。:这项回顾性研究纳入了109例经组织病理学确诊的ccRCC患者。从肾实质期CT扫描中提取影像组学特征。通过组内相关系数(ICC)评估特征稳健性,随后使用Pearson相关性和最小冗余最大相关性(mRMR)进行冗余减少。使用8折交叉验证训练逻辑回归、支持向量机和随机森林分类器。计算SHAP值以评估特征贡献。:逻辑回归模型实现了最高的分类性能,准确率为82%,AUC为0.86。SHAP分析确定长轴长度、致密程度和大面积强调为最具影响力的特征。这些变量代表了形状和纹理信息,对于区分高ISUP分级和低ISUP分级至关重要。:使用肾实质期CT的基于影像组学的逻辑回归模型能够根据ISUP分级对ccRCC进行准确的非侵入性分类。SHAP值的使用提高了模型的透明度,支持临床可解释性以及在精准肿瘤学中的潜在应用。