Suppr超能文献

基于计算机断层扫描的乏脂性小肾肿瘤亚型的影像组学诊断模型

Computed Tomography-Based Radiomics Diagnostic Model for Fat-Poor Small Renal Tumor Subtypes.

作者信息

Bang Seokhwan, Wang Heehwan, Bae Hoyoung, Hong Sung-Hoo, Cha Jiook, Choi Moon Hyung

机构信息

Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Republic of Korea.

出版信息

Diagnostics (Basel). 2025 May 28;15(11):1365. doi: 10.3390/diagnostics15111365.

Abstract

Differentiating histologic subtypes of fat-poor small renal masses using conventional imaging remains difficult due to their overlapping radiologic characteristics. We aimed to develop a machine learning-based diagnostic model using CT-derived radiomic features to classify the five most common renal tumor subtypes: clear cell RCC (ccRCC), papillary RCC (pRCC), chromophobe RCC (chRCC), angiomyolipoma (AML), and oncocytoma. A total of 499 patients with pathologically confirmed renal tumors who underwent preoperative contrast-enhanced CT and nephrectomy were retrospectively analyzed. We extracted and analyzed radiomic features from 1548 multi-phase CT scans from 499 patients, focusing on fat-poor tumors. Five machine learning classifiers including Linear SVM, Rbf SVM, Random Forest, and XGBoost were involved. Among the models, XGBoost showed the best classification performance, with an average AU-PRC: mean = 0.757, standard error = 0.033 and a renal angiomyolipoma-specific AU-ROC: mean = 0.824, standard error = 0.023. These results outperformed other single-phase CT radiomic feature-based machine learning models trained with 20% of principal components. This study demonstrates the effectiveness of radiomics-based machine learning in classifying renal tumor subtypes and highlights the potential of AI in medical imaging. The findings, particularly the utility of single-phase CT and feature optimization, offer valuable insights for future precision medicine approaches. Such methods may support more personalized diagnosis and treatment planning in renal oncology.

摘要

由于乏脂性小肾肿块的放射学特征相互重叠,使用传统成像方法区分其组织学亚型仍然很困难。我们旨在开发一种基于机器学习的诊断模型,利用CT衍生的放射组学特征对五种最常见的肾肿瘤亚型进行分类:透明细胞肾细胞癌(ccRCC)、乳头状肾细胞癌(pRCC)、嫌色细胞肾细胞癌(chRCC)、肾血管平滑肌脂肪瘤(AML)和嗜酸细胞瘤。对499例经病理证实的肾肿瘤患者进行了回顾性分析,这些患者均接受了术前对比增强CT检查和肾切除术。我们从499例患者的1548次多期CT扫描中提取并分析了放射组学特征,重点关注乏脂性肿瘤。涉及了包括线性支持向量机、径向基函数支持向量机、随机森林和XGBoost在内的五种机器学习分类器。在这些模型中,XGBoost表现出最佳的分类性能,平均曲线下面积-精确率曲线(AU-PRC):均值=0.757,标准误差=0.033,肾血管平滑肌脂肪瘤特异性曲线下面积-受试者工作特征曲线(AU-ROC):均值=0.824,标准误差=0.023。这些结果优于其他基于单相CT放射组学特征且使用20%主成分训练的机器学习模型。本研究证明了基于放射组学的机器学习在肾肿瘤亚型分类中的有效性,并突出了人工智能在医学成像中的潜力。这些发现,特别是单相CT的实用性和特征优化,为未来的精准医学方法提供了有价值的见解。此类方法可能支持肾肿瘤学中更个性化的诊断和治疗规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c96b/12155376/fdd2c4dd9c7a/diagnostics-15-01365-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验