Suppr超能文献

骨科临床疗效研究中的缺失数据:利用大型多中心全肩关节置换数据库对插补技术的敏感性分析

Missing Data in Orthopaedic Clinical Outcomes Research: A Sensitivity Analysis of Imputation Techniques Utilizing a Large Multicenter Total Shoulder Arthroplasty Database.

作者信息

Hao Kevin A, Vasilopoulos Terrie, Elwell Josie, Roche Christopher P, Hones Keegan M, Wright Jonathan O, King Joseph J, Wright Thomas W, Simovitch Ryan W, Schoch Bradley S

机构信息

Department of Orthopaedic Surgery & Sports Medicine, University of Florida, Gainesville, FL 32611, USA.

Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA.

出版信息

J Clin Med. 2025 May 29;14(11):3829. doi: 10.3390/jcm14113829.

Abstract

When missing data are present in clinical outcomes studies, complete-case analysis (CCA) is often performed, whereby patients with missing data are excluded. While simple, CCA analysis may impart selection bias and reduce statistical power, leading to erroneous statistical results in some cases. However, there exist more rigorous statistical approaches, such as single and multiple imputation, which approximate the associations that would have been present in a full dataset and preserve the study's power. The purpose of this study is to evaluate how statistical results differ when performed after CCA analysis versus imputation methods. This simulation study analyzed a sample dataset consisting of 2204 shoulders, with complete datapoints from a larger multicenter total shoulder arthroplasty database. From the sampled dataset of demographics, surgical characteristics, and clinical outcomes, we created five test datasets, ranging from 100 to 2000 shoulders, and simulated 10-50% missingness in the postoperative American Shoulder and Elbow Surgeons (ASES) score and range of motion in four planes in missing completely at random (MCAR), missing at random (MAR), and not missing at random (NMAR) patterns. Missingness in outcomes was remedied using CCA, three single imputation techniques, and two multiple imputation techniques. The imputation performance was evaluated relative to the native complete dataset using the root mean squared error (RMSE) and the mean absolute percentage error (MAPE). We also compared the mean and standard deviation (SD) of the postoperative ASES score and the results of multivariable linear and logistic regression to understand the effects of imputation on the study results. The average overall RMSE and MAPE were similar for MCAR (22.6 and 27.2%) and MAR (19.2 and 17.7%) missingness patterns, but were substantially poorer for NMAR (37.5 and 79.2%); the sample size and the percentage of data missingness minimally affected RMSE and MAPE. Aggregated mean postoperative ASES scores were within 5% of the true value when missing data were remedied with CCA, and all candidate imputation methods for nearly all ranges of sample size and data missingness when data were MCAR or MAR, but not when data were NMAR. When data were MAR, CCA resulted in overestimates of the SD. When data were MCAR or MAR, the accuracy of the regression estimate (β or OR) and its corresponding 95% CI varied substantially based on the sample size and proportion of missing data for multivariable linear regression, but not logistic regression. When data were MAR, the width of the 95% CI was up to 300% larger when CCA was used, whereas most imputation methods maintained the width of the 95% CI within 50% of the true value. Single imputation with k-nearest neighbor (kNN) method and multiple imputation with predictive mean matching (MICE-PMM) best-reproduced point estimates and intervariable relationships resembling the native dataset. Availability of correlated outcome scores improved the RMSE, MAPE, accuracy of the mean postoperative ASES score, and multivariable linear regression model estimates. Complete-case analysis can introduce selection bias when data are MAR, and it results in loss of statistical power, resulting in loss of precision (i.e., expansion of the 95% CI) and predisposition to false-negative findings. Our data demonstrate that imputation can reliably reproduce missing clinical data and generate accurate population estimates that closely resemble results derived from native primary shoulder arthroplasty datasets (i.e., prior to simulated data missingness). Further study of the use of imputation in clinical database research is critical, as the use of CCA may lead to different conclusions in comparison to more rigorous imputation approaches.

摘要

在临床结局研究中出现缺失数据时,常采用完整病例分析(CCA),即将有缺失数据的患者排除。虽然简单,但CCA分析可能会产生选择偏倚并降低统计效力,在某些情况下会导致错误的统计结果。然而,存在更严格的统计方法,如单重和多重插补,它们可以近似完整数据集中本来会存在的关联,并保留研究的效力。本研究的目的是评估在CCA分析后与插补方法后进行统计分析时结果有何不同。这项模拟研究分析了一个由2204个肩部组成的样本数据集,其完整数据点来自一个更大的多中心全肩关节置换数据库。从人口统计学、手术特征和临床结局的样本数据集中,我们创建了五个测试数据集,肩部数量从100到2000不等,并模拟了术后美国肩肘外科医师学会(ASES)评分以及四个平面活动范围中10% - 50%的数据以完全随机缺失(MCAR)、随机缺失(MAR)和非随机缺失(NMAR)模式缺失。使用CCA、三种单重插补技术和两种多重插补技术来弥补结局数据中的缺失。使用均方根误差(RMSE)和平均绝对百分比误差(MAPE)相对于原始完整数据集评估插补性能。我们还比较了术后ASES评分的均值和标准差(SD)以及多变量线性和逻辑回归的结果,以了解插补对研究结果的影响。对于MCAR(22.6%和27.2%)和MAR(19.2%和17.7%)缺失模式,平均总体RMSE和MAPE相似,但对于NMAR(37.5%和79.2%)则明显更差;样本量和数据缺失百分比对RMSE和MAPE的影响最小。当用CCA弥补缺失数据时,汇总的术后ASES评分均值在真实值的5%以内,并且当数据为MCAR或MAR时,对于几乎所有样本量范围和数据缺失情况,所有候选插补方法均如此,但数据为NMAR时则不然。当数据为MAR时,CCA导致对SD的高估。当数据为MCAR或MAR时,回归估计值(β或OR)及其相应的95%置信区间(CI)的准确性在多变量线性回归中会因样本量和缺失数据比例而有很大差异,但逻辑回归则不然。当数据为MAR时,使用CCA时95% CI的宽度会增大多达300%,而大多数插补方法将95% CI的宽度保持在真实值的50%以内。使用k近邻(kNN)方法的单重插补和使用预测均值匹配(MICE - PMM)的多重插补能最好地重现点估计值和类似于原始数据集的变量间关系。相关结局评分的可用性提高了RMSE、MAPE、术后ASES评分均值的准确性以及多变量线性回归模型估计值。当数据为MAR时,完整病例分析会引入选择偏倚,并导致统计效力丧失,从而导致精度损失(即95% CI扩大)和假阴性结果倾向。我们的数据表明,插补可以可靠地重现缺失的临床数据并生成准确的总体估计值,这些估计值与源自原始肩部置换数据集(即模拟数据缺失之前)的结果非常相似。在临床数据库研究中进一步研究插补的应用至关重要,因为与更严格的插补方法相比,使用CCA可能会得出不同的结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fb3/12157154/7a731c054b9b/jcm-14-03829-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验