Bruzzi P, Green S B, Byar D P, Brinton L A, Schairer C
Am J Epidemiol. 1985 Nov;122(5):904-14. doi: 10.1093/oxfordjournals.aje.a114174.
A straightforward and unified approach is presented for the calculation of the population attributable risk per cent (etiologic fraction) in the general multivariate setting, with emphasis on using data from case-control studies. The summary attributable risk for multiple factors can be estimated, with or without adjustment for other (confounding) risk factors. The relation of this approach to procedures in the literature is discussed. Given values of the relative risks for various combinations of factors, all that is required is the distribution of these factors among the cases only. The required information can often be estimated solely from case-control data, and in some situations relative risk estimates from one population can be applied to calculation of attributable risk for another population. The authors emphasize the benefits to be obtained from logistic regression models, so that risks need not be estimated separately in a large number of strata, some of which may contain inadequate numbers of individuals. This approach allows incorporation of important interactions between factors, but does not require that all possible interactions be included. The approach is illustrated with data on four risk factors from a pair-matched case-control study of participants in a multicenter breast cancer screening project.
本文提出了一种直接且统一的方法,用于在一般多变量环境中计算人群归因风险百分比(病因分数),重点是使用病例对照研究的数据。可以估计多个因素的汇总归因风险,无论是否对其他(混杂)风险因素进行调整。讨论了该方法与文献中程序的关系。给定各种因素组合的相对风险值,所需的只是这些因素在病例中的分布情况。所需信息通常仅可从病例对照数据中估计,并且在某些情况下,来自一个人群的相对风险估计值可用于计算另一人群的归因风险。作者强调了从逻辑回归模型中获得的益处,这样就无需在大量分层中分别估计风险,其中一些分层可能个体数量不足。该方法允许纳入因素之间的重要相互作用,但不要求包含所有可能的相互作用。通过一项多中心乳腺癌筛查项目参与者的配对病例对照研究中四个风险因素的数据对该方法进行了说明。