Pukoli Daniel, Vécsei László
Department of Neurology, Esztergomi Vaszary Kolos Hospital, H-2500 Esztergom, Hungary.
Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary.
Int J Mol Sci. 2025 May 26;26(11):5098. doi: 10.3390/ijms26115098.
Multiple sclerosis (MS) is a chronic autoimmune disease characterised by inflammation, demyelination, and neurodegeneration within the central nervous system. The pathogenesis of MS involves an immune-mediated attack on myelin and neurons, accompanied by blood-brain barrier dysfunction and chronic CNS inflammation. Central to MS pathology is dysregulation of the kynurenine pathway, which metabolises tryptophan into neuroactive compounds. Kynurenine pathway (KP) activation, driven by inflammatory cytokines, leads to the production of both neuroprotective (e.g., kynurenic acid, KYNA) and neurotoxic (e.g., quinolinic acid, QUIN) metabolites. Imbalance between these metabolites, particularly increased QUIN production, exacerbates glutamate excitotoxicity, oxidative stress, and mitochondrial dysfunction, contributing to neuronal and oligodendrocyte damage. Mitochondrial dysfunction plays a critical role in the pathophysiology of MS, exacerbating neurodegeneration through impaired energy metabolism and oxidative stress. This review integrates the current understanding of KP dysregulation in multiple sclerosis across disease stages. In RRMS, heightened KP activity correlates with inflammation and neuroprotection attempts through increased KYNA production. In contrast, SPMS and PPMS are associated with a shift towards a more neurotoxic KP profile, marked by elevated QUIN levels and reduced KYNA, exacerbating neurodegeneration and disability progression. Understanding these mechanisms offers insights into potential biomarkers and therapeutic targets for MS, emphasising the need for strategies to rebalance KP metabolism and mitigate neurotoxicity in progressive disease stages.
多发性硬化症(MS)是一种慢性自身免疫性疾病,其特征是中枢神经系统内发生炎症、脱髓鞘和神经变性。MS的发病机制涉及对髓鞘和神经元的免疫介导攻击,同时伴有血脑屏障功能障碍和慢性中枢神经系统炎症。MS病理的核心是犬尿氨酸途径失调,该途径将色氨酸代谢为神经活性化合物。由炎性细胞因子驱动的犬尿氨酸途径(KP)激活会导致产生具有神经保护作用的(如犬尿喹啉酸,KYNA)和具有神经毒性的(如喹啉酸,QUIN)代谢产物。这些代谢产物之间的失衡,尤其是QUIN生成增加,会加剧谷氨酸兴奋性毒性、氧化应激和线粒体功能障碍,导致神经元和少突胶质细胞损伤。线粒体功能障碍在MS的病理生理学中起关键作用,通过受损的能量代谢和氧化应激加剧神经变性。本综述整合了目前对多发性硬化症不同疾病阶段犬尿氨酸途径失调的认识。在复发缓解型多发性硬化症(RRMS)中,犬尿氨酸途径活性增强与炎症以及通过增加KYNA生成进行的神经保护尝试相关。相比之下,继发进展型多发性硬化症(SPMS)和原发进展型多发性硬化症(PPMS)与向更具神经毒性的犬尿氨酸途径特征转变有关,其特点是QUIN水平升高和KYNA降低,加剧神经变性和残疾进展。了解这些机制有助于深入了解MS的潜在生物标志物和治疗靶点,强调在疾病进展阶段需要采取策略来重新平衡犬尿氨酸途径代谢并减轻神经毒性。