Wang Xianyao, Huang Yutong, Wei Siyu, Xu Weize, Zhu Xiangsen, Mu Jiong, Chen Xiaoyan
College of Information Engineering, Sichuan Agriculture University, Ya'an 625014, China.
College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China.
Plants (Basel). 2025 Jun 5;14(11):1729. doi: 10.3390/plants14111729.
Mandarin fruit detection provides crucial technical support for yield prediction and the precise identification and harvesting of mandarin fruits. However, challenges such as occlusion from leaves or branches, the presence of small or partially visible fruits, and limitations in model efficiency pose significant obstacles in a complex orchard environment. To tackle these issues, we propose ELD-YOLO, a lightweight detection framework designed to enhance edge detail preservation and improve the detection of small and occluded fruits. Our method incorporates edge-aware processing to strengthen feature representation, introduces a streamlined detection head that balances accuracy with computational cost, and employs an adaptive upsampling strategy to minimize information loss during feature scaling. Experiments on a mandarin fruit dataset show that ELD-YOLO achieves a precision of 89.7%, a recall of 83.7%, an mAP@50 of 92.1%, and an mAP@50:95 of 68.6% while reducing the parameter count by 15.4% compared with the baseline. These results demonstrate that ELD-YOLO provides an effective and efficient solution for fruit detection in complex orchard scenarios.
柑橘果实检测为产量预测以及柑橘果实的精确识别与采摘提供了关键的技术支持。然而,在复杂的果园环境中,诸如被树叶或树枝遮挡、存在小果实或部分可见果实以及模型效率受限等挑战构成了重大障碍。为解决这些问题,我们提出了ELD - YOLO,这是一个轻量级检测框架,旨在增强边缘细节保留并改进对小果实和被遮挡果实的检测。我们的方法采用边缘感知处理来强化特征表示,引入了一个在准确性与计算成本之间取得平衡的简化检测头,并采用自适应上采样策略以在特征缩放期间最小化信息损失。在柑橘果实数据集上的实验表明,与基线相比,ELD - YOLO实现了89.7%的精度、83.7%的召回率、92.1%的mAP@50以及68.6%的mAP@50:95,同时参数数量减少了15.4%。这些结果表明ELD - YOLO为复杂果园场景中的果实检测提供了一种有效且高效的解决方案。