Suppr超能文献

YOLO-人参:一种自然农业环境中人参果的检测方法。

YOLO-Ginseng: a detection method for ginseng fruit in natural agricultural environment.

作者信息

Xie Zhedong, Yang Zhuang, Li Chao, Zhang Zhen, Jiang Jiazhuo, Guo Hongyu

机构信息

College of Engineering and Technology, Jilin Agricultural University, Changchun, China.

出版信息

Front Plant Sci. 2024 Nov 20;15:1422460. doi: 10.3389/fpls.2024.1422460. eCollection 2024.

Abstract

INTRODUCTION

The accurate and rapid detection of ginseng fruits in natural environments is crucial for the development of intelligent harvesting equipment for ginseng fruits. Due to the complexity and density of the growth environment of ginseng fruits, some newer visual detection methods currently fail to meet the requirements for accurate and rapid detection of ginseng fruits. Therefore, this study proposes the YOLO-Ginseng detection method.

METHODS

Firstly, this detection method innovatively proposes a plug-and-play deep hierarchical perception feature extraction module called C3f-RN, which incorporates a sliding window mechanism. Its unique structure enables the interactive processing of cross-window feature information, expanding the deep perception field of the network while effectively preserving important weight information. This addresses the detection challenges caused by occlusion or overlapping of ginseng fruits, significantly reducing the overall missed detection rate and improving the long-distance detection performance of ginseng fruits; Secondly, in order to maintain the balance between YOLO-Ginseng detection precision and speed, this study employs a mature channel pruning algorithm to compress the model.

RESULTS

The experimental results demonstrate that the compressed YOLO-Ginseng achieves an average precision of 95.6%, which is a 2.4% improvement compared to YOLOv5s and only a 0.2% decrease compared to the uncompressed version. The inference time of the model reaches 7.4ms. The compressed model exhibits reductions of 76.4%, 79.3%, and 74.2% in terms of model weight size, parameter count, and computational load, respectively.

DISCUSSION

Compared to other models, YOLO-Ginseng demonstrates superior overall detection performance. During the model deployment experiments, YOLO-Ginseng successfully performs real-time detection of ginseng fruits on the Jetson Orin Nano computing device, exhibiting good detection results. The average detection speed reaches 24.9 fps. The above results verify the effectiveness and practicability of YOLO-Ginseng, which creates primary conditions for the development of intelligent ginseng fruit picking equipment.

摘要

引言

在自然环境中准确快速地检测人参果对于人参果智能采摘设备的开发至关重要。由于人参果生长环境的复杂性和密度,一些较新的视觉检测方法目前无法满足准确快速检测人参果的要求。因此,本研究提出了YOLO-人参检测方法。

方法

首先,这种检测方法创新性地提出了一种即插即用的深度层次感知特征提取模块,称为C3f-RN,它结合了滑动窗口机制。其独特的结构能够对跨窗口特征信息进行交互式处理,在有效保留重要权重信息的同时,扩展了网络的深度感知域。这解决了人参果遮挡或重叠引起的检测挑战,显著降低了整体漏检率,提高了人参果的远距离检测性能;其次,为了保持YOLO-人参检测精度和速度之间的平衡,本研究采用成熟的通道剪枝算法对模型进行压缩。

结果

实验结果表明,压缩后的YOLO-人参平均精度达到95.6%,与YOLOv5s相比提高了2.4%,与未压缩版本相比仅下降了0.2%。模型的推理时间达到7.4毫秒。压缩后的模型在模型权重大小、参数数量和计算负载方面分别减少了76.4%、79.3%和74.2%。

讨论

与其他模型相比,YOLO-人参展现出卓越的整体检测性能。在模型部署实验中,YOLO-人参在Jetson Orin Nano计算设备上成功实现了人参果的实时检测,呈现出良好的检测效果。平均检测速度达到24.9帧/秒。上述结果验证了YOLO-人参的有效性和实用性,为人参果智能采摘设备的开发创造了初步条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8137/11618388/ec92ff54d539/fpls-15-1422460-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验