Zeng Ning-Fu, Lin Yong-Cheng, Li Shu-Xin, Ling Yun-Han, Yang Jin, Chen Ming-Song, Cai Hong-Wei, Chen Zi-Jian, Wu Gui-Cheng
School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Changsha 410083, China.
Materials (Basel). 2025 May 27;18(11):2526. doi: 10.3390/ma18112526.
This study proposes a novel unified constitutive model that systematically integrates the microstructure evolution and macroscopic stress-strain response during the hot deformation of a Ni-based superalloy. The proposed model incorporates a suite of microstructural variables, including damage fraction, recrystallization fraction, δ phase content, average grain size, and dislocation density. Furthermore, the model explicitly considers critical macroscopic stress state parameters, specifically the magnitude and orientation of maximum principal stress, hydrostatic stress component, and Mises equivalent stress. A comparative analysis of rheological curves derived from uniaxial tension and compression experiments reveals that the prediction errors of the proposed model are less than 3%. The model is subsequently implemented to investigate the evolution characteristics of the damage accumulation fraction and δ phase content under varying stress directions and initial δ phase contents. An advanced computational framework integrating the finite element method with the proposed constitutive model is established through customized subroutines. The framework exhibits exceptional predictive accuracy across critical regions of disk forging, as evidenced by a close agreement between computational and experimental results. Specifically, the relative errors for predicting recrystallization fraction and average grain size remain consistently below 8% under varying stress-strain conditions. Testing results from four representative regions demonstrate a good alignment of high-temperature tensile properties with the macroscopic stress-strain distributions and microstructure characteristics, thereby confirming the model's reliability in simulating and optimizing the forging process.
本研究提出了一种新颖的统一本构模型,该模型系统地整合了镍基高温合金热变形过程中的微观结构演变和宏观应力 - 应变响应。所提出的模型纳入了一系列微观结构变量,包括损伤分数、再结晶分数、δ相含量、平均晶粒尺寸和位错密度。此外,该模型明确考虑了关键的宏观应力状态参数,特别是最大主应力的大小和方向、静水应力分量以及米塞斯等效应力。对单轴拉伸和压缩实验得出的流变曲线进行的对比分析表明,所提出模型的预测误差小于3%。随后,该模型被用于研究在不同应力方向和初始δ相含量下损伤累积分数和δ相含量的演变特征。通过定制子程序建立了一个将有限元方法与所提出的本构模型相结合的先进计算框架。该框架在盘形锻造的关键区域表现出卓越的预测精度,计算结果与实验结果的密切吻合证明了这一点。具体而言,在不同的应力 - 应变条件下,预测再结晶分数和平均晶粒尺寸的相对误差始终保持在8%以下。来自四个代表性区域的测试结果表明,高温拉伸性能与宏观应力 - 应变分布和微观结构特征具有良好的一致性,从而证实了该模型在模拟和优化锻造过程中的可靠性。