Xie Xiaoling, Sun Xin, Lin Wanming, Yang Xiaofeng, Wang Ruicong
College of New Energy and Materials Engineering, Shanxi University of Electronic Science and Technology, Linfen 041000, China.
Zhejiang Institute of Tianjin University, Ningbo 315201, China.
Materials (Basel). 2025 May 30;18(11):2568. doi: 10.3390/ma18112568.
The hypoxic microenvironment is the main challenge for the repair of damaged tissue, and oxygen supply is an effective means of alleviating hypoxia. In this study, a series of core-shell-structured calcium peroxide/poly(ethylene glycol)@silica (CPO@SiO) nanoparticles are prepared to generate oxygen steadily. The size of the CPO@SiO nanoparticles ranges from 205 to 302 nm, with a narrow polydispersity index (PDI). In this system, the nano CPO core acts as the oxygen source to improve hypoxia, while the SiO shell layer serves as the physical barrier to control the oxygen-generating rate and improve biocompatibility. The results suggest that the thickness of the SiO shell layer can be modulated by adjusting the amount of tetraethyl orthosilicate (TEOS). The prepared CPO@SiO nanoparticles show a controlled oxygen-generating rate. Moreover, compared with CPO, the CPO@SiO nanoparticles have good biocompatibility. To assess the modulating effects for the hypoxic microenvironment, L929 cells are co-cultured with CPO@ SiO nanoparticles under hypoxia. The results suggest that the CPO@ SiO nanoparticles can support the cell survival under hypoxia. Moreover, they can effectively decrease oxidative stress damage and reduce the levels of expression of hypoxia-induced superoxide dismutase (SOD) and malondialdehyde (MDA). Therefore, the prepared CPO@ SiO nanoparticles with controlled oxygen-generating properties could be a promising candidate for repairing damaged tissue.
缺氧微环境是受损组织修复面临的主要挑战,而供氧是缓解缺氧的有效手段。在本研究中,制备了一系列核壳结构的过氧化钙/聚乙二醇@二氧化硅(CPO@SiO)纳米颗粒以稳定产氧。CPO@SiO纳米颗粒的尺寸范围为205至302nm,具有窄的多分散指数(PDI)。在该体系中,纳米CPO核作为氧源改善缺氧,而SiO壳层作为物理屏障控制产氧速率并提高生物相容性。结果表明,SiO壳层的厚度可通过调节正硅酸乙酯(TEOS)的用量来调控。所制备的CPO@SiO纳米颗粒显示出可控的产氧速率。此外,与CPO相比,CPO@SiO纳米颗粒具有良好的生物相容性。为评估对缺氧微环境的调节作用,将L929细胞与CPO@SiO纳米颗粒在缺氧条件下共培养。结果表明,CPO@SiO纳米颗粒可在缺氧条件下支持细胞存活。此外,它们能有效降低氧化应激损伤并降低缺氧诱导的超氧化物歧化酶(SOD)和丙二醛(MDA)的表达水平。因此,所制备的具有可控产氧性能的CPO@SiO纳米颗粒有望成为修复受损组织的候选材料。