Hussain Mohammed Althaf, Aoyagi Takeshi, Kikutani Takeshi, Takarada Wataru, Yamamoto Takashi, Adil Syed Farooq, Yao Shigeru
Faculty of Engineering, Fukuoka University, Fukuoka 814-0180, Japan.
Informatics Initiative (IFX), Asahi Kasei Corporation, Chiyoda 100-0006, Japan.
Polymers (Basel). 2025 May 23;17(11):1450. doi: 10.3390/polym17111450.
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in the stretch-induced crystallization (SIC) of high-density polyethylene (HDPE), which mimics the internal structure of the fiber. The morphology in phase transition is assessed by the total density (), degree of crystallinity (%χc), average number of entanglements per chain (<>), elastic modulus of the mechanical property, and lamellar chain tilt angle (θ) from the stretch-axis. The simulation emphasizes crystal formation by changing the total from 0.85 g·cm to 0.90 g·cm and by tracking the gradual increase in % χc during stretching (40%) and relaxation processes (50%). Moreover, the primitive path analysis-based <> decreased during stretching and further in the subsequent relaxation process, supporting the alignment and thickening of the lamellar chain structure and chain folding from the random coil structure. The elastic modulus of ~350-400 MPa evidences the high alignment of the lamellar chains along the stretching axis. Consistent with the chain tilt angle of the HDPE in SAXS/WAXS experiments, the model estimated the lamellar chain title angle () relative to the stretching axis to be ~20-35°. In conclusion, SIC is a convenient approach for simulating high stiffness, tensile strength, reduced permeability, and chain alignment in fiber film models, which can help design new fiber morphology-based polymers or composites.
通过取向依赖方法制备的聚乙烯薄膜强度高且具有弹性,渗透率降低,拉伸强度更高。进行了分子动力学研究,以揭示在高密度聚乙烯(HDPE)的拉伸诱导结晶(SIC)过程中,链折叠和片晶轴沿拉伸轴(倾斜角)排列的出现情况,该过程模拟了纤维的内部结构。通过总密度()、结晶度(%χc)、每条链的平均缠结数(<>)、力学性能的弹性模量以及片晶链相对于拉伸轴的倾斜角(θ)来评估相变过程中的形态。模拟通过将总密度从0.85 g·cm³ 改变到0.90 g·cm³ 以及跟踪拉伸过程(约40%)和松弛过程(约50%)中%χc的逐渐增加来强调晶体形成。此外,基于原始路径分析的<>在拉伸过程中以及随后的松弛过程中进一步降低,支持了片晶链结构从无规线团结构的排列和增厚以及链折叠。约350 - 400 MPa的弹性模量证明了片晶链沿拉伸轴的高度排列。与SAXS/WAXS实验中HDPE的链倾斜角一致,该模型估计片晶链相对于拉伸轴的倾斜角()约为20 - 35°。总之,SIC是一种在纤维薄膜模型中模拟高刚度、拉伸强度、降低渗透率和链排列的便捷方法,有助于设计基于新纤维形态的聚合物或复合材料。