Suppr超能文献

揭示非晶态聚乙烯在循环载荷作用下的变形机制——分子动力学模拟

Revealing the deformation mechanism of amorphous polyethylene subjected to cycle loading molecular dynamics simulations.

作者信息

Fang Qihong, Tian Yuanyuan, Wu Hong, Li Jia

机构信息

State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University Changsha 410082 PR China

State Key Laboratory of Powder Metallurgy, Central South University Changsha 410083 PR China

出版信息

RSC Adv. 2018 Sep 18;8(56):32377-32386. doi: 10.1039/c8ra05868g. eCollection 2018 Sep 12.

Abstract

Despite tremendous efforts being devoted to the study of the deformation behavior of polyethylene, the deformation mechanism of an amorphous polyethylene polymer under cycle shear-loading remains largely unknown. Here, we report the cycle shear deformation mechanism of an amorphous polyethylene polymer using molecular dynamics (MD) simulations. The stress-strain behaviors, including the elastic, yield, strain hardening, and strain softening regions, are qualitatively in agreement with the previous results. The values of the yield stress, Young's modulus and ultimate strength obtained from MD simulations are consistent with the previous data. The effects of the shear strain rate, temperature, and cycle shear-loading number on the stress-strain behaviors are investigated. Higher strain rate and a lower temperature result in a higher strength in the amorphous polyethylene polymer, attributed to the agglomeration of high local strains. With the increase of the cycle shear-loading number, the high strain region gradually expands from the upper and lower surface to the interior of the polyethylene polymer matrix, which provides the origin of crack initiation. The energy contributions are used in elucidating the inherent deformation mechanisms within the elastic, yielding, strain hardening, and strain softening regions, and the variation trend of energy is consistent with the stress-strain response.

摘要

尽管在聚乙烯变形行为的研究上投入了巨大努力,但非晶态聚乙烯聚合物在循环剪切载荷下的变形机制仍 largely unknown。在此,我们使用分子动力学(MD)模拟报告了非晶态聚乙烯聚合物的循环剪切变形机制。应力 - 应变行为,包括弹性、屈服、应变硬化和应变软化区域,在定性上与先前结果一致。从MD模拟获得的屈服应力、杨氏模量和极限强度值与先前数据一致。研究了剪切应变率、温度和循环剪切载荷次数对应力 - 应变行为的影响。较高的应变率和较低的温度导致非晶态聚乙烯聚合物具有更高的强度,这归因于高局部应变的聚集。随着循环剪切载荷次数的增加,高应变区域逐渐从聚乙烯聚合物基体的上下表面扩展到内部,这为裂纹萌生提供了起源。能量贡献用于阐明弹性、屈服、应变硬化和应变软化区域内的固有变形机制,并且能量的变化趋势与应力 - 应变响应一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验