文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

热聚合聚甲基丙烯酸甲酯与当代计算机辅助设计/计算机辅助制造框架材料之间粘结强度的优化:一项体外对比研究。

Optimization of Bond Strength Between Heat-Polymerized PMMA and Contemporary CAD/CAM Framework Materials: A Comparative In Vitro Study.

作者信息

Topdağı Başak

机构信息

Department of Prosthodontics, Faculty of Dentistry, Hamidiye Campus, University of Health Sciences, Istanbul 34668, Türkiye.

出版信息

Polymers (Basel). 2025 May 27;17(11):1488. doi: 10.3390/polym17111488.


DOI:10.3390/polym17111488
PMID:40508730
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12157249/
Abstract

This study aimed to comparatively evaluate the effects of various surface treatment protocols on the shear bond strength (SBS) between heat-polymerized polymethyl methacrylate (PMMA) and different CAD/CAM framework materials, including cobalt-chromium (Co-Cr) alloys, ceramic particle-reinforced polyetheretherketone (PEEK), and glass fiber-reinforced composite resin (FRC). A total of 135 disc-shaped specimens were prepared from Co-Cr, PEEK, and FRC materials. Surface treatments specific to each material, including airborne-particle abrasion, sulfuric acid etching, laser irradiation, plasma activation, and primer application, were applied. PMMA cylinders were polymerized onto the treated surfaces, and all specimens were subjected to 30,000 thermal cycles. SBS values were measured using a universal testing machine, and the failure modes were classified. The normality of data distribution was assessed using the Kolmogorov-Smirnov test, and the homogeneity of variances was evaluated using Levene's test. Group comparisons were performed using the Kruskal-Wallis test, and Dunn's post hoc test with Bonferroni correction was applied in cases where significant differences were detected (α = 0.05). The highest SBS values (27-28 MPa) were obtained in the Co-Cr group and in the PEEK groups treated with sulfuric acid and primer. In contrast, the PEEK group with additional laser treatment exhibited a lower SBS value. The untreated PEEK group showed significantly lower SBS (3.9 MPa) compared to all other groups. The Trinia groups demonstrated intermediate SBS values (16.5-17.4 MPa), which exceeded the clinically acceptable threshold of 10 MPa. SEM observations revealed material- and protocol-specific surface responses; plasma-treated specimens maintained topographic integrity, whereas laser-induced surfaces showed localized degradation, particularly following dual-step protocols. Fracture mode analysis indicated that higher SBS values were associated with cohesive or mixed failures. SEM observations suggested that plasma treatment preserved surface morphology more effectively than laser treatment. This study highlights the importance of selecting material-specific surface treatments to optimize bonding between CAD/CAM frameworks and PMMA. Sulfuric acid and primer provided strong adhesion for PEEK, while the addition of laser or plasma offered no further benefit, making such steps potentially unnecessary. Trinia frameworks also showed acceptable performance with conventional treatments. These findings reinforce that simplified conditioning protocols may be clinically sufficient, and indicate that FRC materials like Trinia should be more fully considered for their broader clinical potential in modern CAD/CAM-based prosthetic planning.

摘要

本研究旨在比较评估各种表面处理方案对热聚合聚甲基丙烯酸甲酯(PMMA)与不同CAD/CAM框架材料之间剪切粘结强度(SBS)的影响,这些材料包括钴铬(Co-Cr)合金、陶瓷颗粒增强聚醚醚酮(PEEK)和玻璃纤维增强复合树脂(FRC)。从Co-Cr、PEEK和FRC材料制备了总共135个圆盘形试样。对每种材料进行了特定的表面处理,包括空气颗粒研磨、硫酸蚀刻、激光照射、等离子体活化和底漆应用。将PMMA圆柱体聚合到处理过的表面上,所有试样都经受30000次热循环。使用万能试验机测量SBS值,并对失效模式进行分类。使用Kolmogorov-Smirnov检验评估数据分布的正态性,使用Levene检验评估方差的齐性。使用Kruskal-Wallis检验进行组间比较,在检测到显著差异的情况下应用经Bonferroni校正的Dunn事后检验(α = 0.05)。在Co-Cr组以及用硫酸和底漆处理的PEEK组中获得了最高的SBS值(约27 - 28 MPa)。相比之下,额外进行激光处理的PEEK组的SBS值较低。未处理的PEEK组与所有其他组相比,SBS值显著较低(约3.9 MPa)。Trinia组的SBS值处于中等水平(16.5 - 17.4 MPa),超过了临床上可接受的10 MPa阈值。扫描电子显微镜(SEM)观察揭示了材料和方案特定的表面反应;等离子体处理的试样保持了形貌完整性,而激光处理的表面显示出局部降解,特别是在两步处理方案之后。断裂模式分析表明,较高的SBS值与内聚或混合失效相关。SEM观察表明,等离子体处理比激光处理更有效地保留了表面形态。本研究强调了选择材料特定表面处理以优化CAD/CAM框架与PMMA之间粘结的重要性。硫酸和底漆为PEEK提供了强附着力,而添加激光或等离子体并没有进一步的益处,使得这些步骤可能不必要。Trinia框架在传统处理下也表现出可接受的性能。这些发现强化了简化的预处理方案在临床上可能就足够了这一观点,并表明像Trinia这样的FRC材料在现代基于CAD/CAM的修复计划中因其更广泛的临床潜力应得到更充分的考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/09bc569c34f3/polymers-17-01488-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/b7cbc0f81faa/polymers-17-01488-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/8bb7a199f94f/polymers-17-01488-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/10a5d8527d03/polymers-17-01488-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/ce47d41de5ed/polymers-17-01488-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/02ae89074801/polymers-17-01488-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/f306d1503e08/polymers-17-01488-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/a0747f40aae2/polymers-17-01488-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/2f522247384d/polymers-17-01488-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/46007e86894b/polymers-17-01488-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/836db759e224/polymers-17-01488-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/806c7c46d29e/polymers-17-01488-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/e5ca3dd6cd59/polymers-17-01488-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/e3cecdf6aa41/polymers-17-01488-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/2f15944bfd08/polymers-17-01488-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/09bc569c34f3/polymers-17-01488-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/b7cbc0f81faa/polymers-17-01488-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/8bb7a199f94f/polymers-17-01488-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/10a5d8527d03/polymers-17-01488-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/ce47d41de5ed/polymers-17-01488-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/02ae89074801/polymers-17-01488-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/f306d1503e08/polymers-17-01488-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/a0747f40aae2/polymers-17-01488-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/2f522247384d/polymers-17-01488-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/46007e86894b/polymers-17-01488-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/836db759e224/polymers-17-01488-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/806c7c46d29e/polymers-17-01488-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/e5ca3dd6cd59/polymers-17-01488-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/e3cecdf6aa41/polymers-17-01488-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/2f15944bfd08/polymers-17-01488-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/191b/12157249/09bc569c34f3/polymers-17-01488-g015.jpg

相似文献

[1]
Optimization of Bond Strength Between Heat-Polymerized PMMA and Contemporary CAD/CAM Framework Materials: A Comparative In Vitro Study.

Polymers (Basel). 2025-5-27

[2]
Bond strength comparison of chemically activated hard reline materials on CAD-CAM milled and conventional heat-polymerized PMMA denture bases.

J Prosthet Dent. 2025-3

[3]
Effect of Surface Treatments and Thermal Aging on Bond Strength Between Veneering Resin and CAD/CAM Provisional Materials.

Polymers (Basel). 2025-2-20

[4]
Effect of various solvents on the repairability of aged CAD/CAM provisional restorative materials with flowable resin composite: an in vitro study.

BMC Oral Health. 2025-3-11

[5]
Effect of surface treatment and resin cement type on the bond strength of polyetheretherketone to lithium disilicate ceramic.

BMC Oral Health. 2024-5-2

[6]
Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials.

J Prosthodont. 2017-11-13

[7]
Evaluation of Shear Bond Strength and Failure Modes of Lithium Disilicate Ceramic Veneering Material to Different High-Performance Polymers.

Polymers (Basel). 2025-2-20

[8]
Effect of surface conditioning with airborne-particle abrasion on the tensile strength of polymeric CAD/CAM crowns luted with self-adhesive and conventional resin cements.

J Prosthet Dent. 2012-2

[9]
An in vitro comparison of shear bond strength of zirconia to enamel using different surface treatments.

J Prosthodont. 2014-2

[10]
Bond strength of aged provisional 3D-printed methacrylate resin with different surface treatments and repair materials.

BMC Oral Health. 2025-5-24

引用本文的文献

[1]
Shear Bond Strength of Self-Adhesive and Self-Etching Resin Cements to Dentin for Indirect Restorations.

J Funct Biomater. 2025-8-12

本文引用的文献

[1]
Biomechanics of the implant-supported full arch fixed complete denture manufactured by milling and injection techniques: An experimental and FEA study.

J Prosthodont. 2025-4-22

[2]
The effect of surface treatments on the bond strength of polyetheretherketone posts: a systematic review protocol.

F1000Res. 2025-4-3

[3]
Fit accuracy assessment of removable partial denture frameworks produced by direct metal laser sintering - a clinical trial.

Clin Oral Investig. 2025-4-18

[4]
Enhancing PEEK bond strength: the impact of chemical and mechanical surface modifications on surface characteristics and phase transformation.

BMC Oral Health. 2025-4-10

[5]
Effect of Surface Treatments and Thermal Aging on Bond Strength Between Veneering Resin and CAD/CAM Provisional Materials.

Polymers (Basel). 2025-2-20

[6]
Digital Workflow for a Definitive Implant-Supported Hybrid Prosthesis.

Compend Contin Educ Dent. 2024

[7]
Fiber-Reinforced Composites for Full-Arch Implant-Supported Rehabilitations: An In Vitro Study.

J Clin Med. 2024-4-2

[8]
Strategies to improve the performance of polyetheretherketone (PEEK) as orthopedic implants: from surface modification to addition of bioactive materials.

J Mater Chem B. 2024-5-15

[9]
Surface modification of Polyether-ether-ketone for enhanced cell response: a chemical etching approach.

Front Bioeng Biotechnol. 2023-9-7

[10]
Enhancing PEEK surface bioactivity: Investigating the effects of combining sulfonation with sub-millimeter laser machining.

Mater Today Bio. 2023-7-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索