Yan Xiaoshan, Ji Zuohui, Li Xiaopeng, Zhao Yue, Li Zhen, Chen Zhai, Li Heguo
State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China.
Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100074, China.
Polymers (Basel). 2025 May 29;17(11):1519. doi: 10.3390/polym17111519.
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a poly(ethylene-alt-tetrafluoroethylene) (ETFE) membrane by the atmospheric pressure dielectric barrier discharge (DBD) of plasma under different working voltages, processing times, and concentrations of acrylic acid (AA) in a helium (He) atmosphere. The increase in the hydrophilicity of the ETFE membrane is confirmed by the wettability test, which shows a significant decrease in the water contact angle, from 96° to 50°, after plasma modification. The interfacial T-peel strength of an ETFE membrane composited with polyester fabric increased from 0.53 N/cm to 13.64 N/cm after plasma modification. Significantly, the T-peel strength of the composite using a modified ETFE membrane with ultrasonic washing could still reach 11.75 N/cm. Various characterization methods clearly disclosed the physical and chemical changes on the ETFE membrane surface, such as introducing the polar -COOH group at a nano-level, improving the roughness, decreasing the ratios of the F/C element, and increasing the ratios of the O/C element, suggesting using nano-level grafted polyacrylic acid (g-PAA) on the surface of the membrane by DBD.
由于其优异的抗渗透性,氟树脂膜成为一种理想的化学防护服材料。然而,使用表面能低的氟树脂膜复合织物极具挑战性。在此,我们展示了一种在氦气(He)气氛中,通过在不同工作电压、处理时间和丙烯酸(AA)浓度下进行等离子体的大气压介质阻挡放电(DBD)来改性聚(乙烯 - 交替 - 四氟乙烯)(ETFE)膜表面的策略。润湿性测试证实了ETFE膜亲水性的增加,结果显示等离子体改性后水接触角从96°显著降至50°。与聚酯织物复合的ETFE膜的界面T剥离强度在等离子体改性后从0.53 N/cm增加到13.64 N/cm。值得注意的是,使用经改性的ETFE膜并经过超声清洗的复合材料的T剥离强度仍可达到11.75 N/cm。各种表征方法清楚地揭示了ETFE膜表面的物理和化学变化,例如在纳米级引入极性 -COOH基团、提高粗糙度、降低F/C元素比率以及增加O/C元素比率,这表明通过DBD在膜表面形成了纳米级接枝聚丙烯酸(g-PAA)。