Huo Yiting, Wu Zhen, Yang Yanhui, Dong Bin, Chang Zhidong
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
School of Chemical Engineering, Ordos Institute of Technology, Ordos 017010, China.
Molecules. 2025 May 25;30(11):2317. doi: 10.3390/molecules30112317.
To enhance the performance of photocatalytic CO reduction, the development of suitable cocatalysts represents an effective strategy. Cocatalysts can interact with photocatalysts to improve light absorption capabilities and facilitate the separation and transfer of photogenerated electrons and holes. Moreover, they provide highly active surface sites that promote the adsorption and activation of CO, which leads to acceleration of photocatalytic reduction. Herein, WO is employed as a cocatalyst to promote the CO photoreduction performance of a g-CN-TiO heterojunction through a facile and scalable calcination method. In pure water, optimal WO/g-CN-TiO (WCT) delivers high selectivity CO and CH formation of 48.31 µmol·g and 77.18 µmol·g in the absence of a sacrificial reagent and extra photosensitizer, roughly 13.9 and 45.7 times higher than that of g-CN-TiO (CT). WO can strongly interact with g-CN-TiO electronically, guiding electrons across the interface to the surface. The oxygen vacancies in WO, as electron-enriched centers, not only enhance charge separation and form efficient charge transfer channels but also capture photogenerated electrons to suppress charge recombination. This strong interaction and oxygen vacancies in WO jointly improve photocatalytic CO reduction activity and selectivity, offering a feasible way to design efficient cocatalysts.
为了提高光催化CO还原性能,开发合适的助催化剂是一种有效的策略。助催化剂可以与光催化剂相互作用,以提高光吸收能力,并促进光生电子和空穴的分离与转移。此外,它们提供高活性的表面位点,促进CO的吸附和活化,从而加速光催化还原。在此,采用WO作为助催化剂,通过一种简便且可扩展的煅烧方法来提高g-CN-TiO异质结的CO光还原性能。在纯水中,最佳的WO/g-CN-TiO(WCT)在没有牺牲试剂和额外光敏剂的情况下,CO和CH的选择性生成量分别为48.31 μmol·g和77.18 μmol·g,分别比g-CN-TiO(CT)高出约13.9倍和45.7倍。WO可以与g-CN-TiO发生强烈的电子相互作用,引导电子穿过界面到达表面。WO中的氧空位作为富电子中心,不仅增强了电荷分离并形成有效的电荷转移通道,还捕获光生电子以抑制电荷复合。WO中的这种强相互作用和氧空位共同提高了光催化CO还原活性和选择性,为设计高效助催化剂提供了一种可行的方法。