Wu Qifan, Jiang Haojie, Ren Hengdong, Wu Yin, Zhou Yong, Chen Jian, Xu Xiaobing, Wu Xinglong
National Laboratory of Solid States Microstructures and School of Physics, Nanjing University, Nanjing 210093, China.
State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing 210093, China.
J Colloid Interface Sci. 2024 Jun;663:825-833. doi: 10.1016/j.jcis.2024.02.171. Epub 2024 Mar 1.
Graphitic carbon nitride (g-CN, CN) has garnered considerable attention in the field of photocatalysis due to its favorable band gap and high specific surface area. However, its primary practical limitation lies in the strong radiative recombination of lone pair (LP) electronic states, leading to limited efficiency in separating photogenerated carriers and subsequently diminishing photocatalytic performance. In this study, we devised and synthesized a heterojunction photocatalytic system comprising TiO nanosheets supported on modified g-CN (MCN), designated as MCN/TiO. The presence of CN functional groups on the tri-s-triazine nitrogen captures photogenerated electrons by modifying LP electronic states, resulting in a reduction in the fluorescence emission intensity of g-CN. Simultaneously, it forms chemical bonds with the supported TiO nanosheets, creating an efficient electron transfer pathway for the accumulation of photogenerated electrons at the active Ti sites. Experimentally, the MCN/TiO photocatalytic system exhibited optimal performance in CO reduction. The CH production rate reached 26.59 μmol g h, surpassing that of TiO and CN/TiO by approximately 8 and 3 times, respectively. Furthermore, this photocatalytic system demonstrated exceptional photostability over five cycles, each lasting 4 h. This research offers a valuable approach for the efficient separation and transfer of photogenerated carriers in composite materials based on g-CN.
石墨相氮化碳(g-CN,CN)因其良好的带隙和高比表面积而在光催化领域备受关注。然而,其主要实际限制在于孤对(LP)电子态的强辐射复合,导致光生载流子分离效率有限,进而降低光催化性能。在本研究中,我们设计并合成了一种异质结光催化体系,该体系由负载在改性g-CN(MCN)上的TiO纳米片组成,命名为MCN/TiO。三嗪氮上的CN官能团通过修饰LP电子态捕获光生电子,导致g-CN的荧光发射强度降低。同时,它与负载的TiO纳米片形成化学键,为光生电子在活性Ti位点的积累创造了一条有效的电子转移途径。实验表明,MCN/TiO光催化体系在CO还原方面表现出最佳性能。CH产率达到26.59 μmol g h,分别比TiO和CN/TiO高出约8倍和3倍。此外,该光催化体系在五个持续4小时的循环中表现出优异的光稳定性。本研究为基于g-CN的复合材料中光生载流子的高效分离和转移提供了一种有价值的方法。