Bruzzese Daniel J, Weiss Brian L, Echodu Richard, Mireji Paul O, Abd-Alla Adly M M, Aksoy Serap
Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States.
Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda.
Insect Sci. 2025 Jun 12. doi: 10.1111/1744-7917.70085.
Tsetse (Glossina spp.) are vectors of African trypanosomes that cause devastating human and animal African trypanosomiases. While much of the research to better understand tsetse genetics and physiology relies on colony-reared flies, these flies may not represent the genetic diversity found in natural wild populations due to their long-term captivity. To enhance the translation of colony research into field applications, we utilized Nanopore sequencing to assemble genomes for a wild-caught female Glossina fuscipes fuscipes (Gff) from northwestern Uganda and for a female Gff from a laboratory line originally sourced from the Central African Republic in 1986. The new assemblies, from the wild-caught Gff (405.98 Mb, N50: 56.86 Mb) and the laboratory-derived Gff (398.22 Mb, N50: 47.811 Mb), demonstrate near-chromosomal level contiguity, high BUSCO scores (> 99.5%), high QV scores (> 37), and over 12 345 genes. Alignments between both new genomes reveal conserved synteny with only minor structural variants in the X, 1L, 1R, 2L, and 2R tsetse chromosomes. While most orthologs (10 730) were shared between both new genomes, we identified 381 unique orthologs and a small number of highly diverged shared single-copy homologs (3.84%). These gene-set differences could represent population-level variation due to the distinct geographic origin of these flies or adaptation to colony conditions. Our new high-quality genomes, with improvements in contiguity and completeness compared to the current NCBI RefSeq Gff genome, lay the foundation for advanced tsetse research, enabling robust lab-to-field translational applications to deepen our understanding of vector biology and disease transmission dynamics.
采采蝇(舌蝇属)是非洲锥虫的传播媒介,可导致毁灭性的人类和动物非洲锥虫病。虽然为更好地了解采采蝇遗传学和生理学所做的许多研究都依赖于圈养繁殖的苍蝇,但由于长期圈养,这些苍蝇可能无法代表自然野生种群中的遗传多样性。为了加强将圈养研究转化为实地应用,我们利用纳米孔测序技术,为一只从乌干达西北部野外捕获的雌性fuscipesfuscipes采采蝇(Gff)和一只来自1986年最初源自中非共和国的实验室品系的雌性Gff组装了基因组。新组装的基因组,野生捕获的Gff基因组(405.98 Mb,N50:56.86 Mb)和实验室衍生的Gff基因组(398.22 Mb,N50:47.811 Mb),显示出接近染色体水平的连续性、高BUSCO分数(>99.5%)、高QV分数(>37)以及超过12,345个基因。两个新基因组之间的比对揭示了保守的共线性,仅在采采蝇X、1L、1R、2L和2R染色体上有微小的结构变异。虽然两个新基因组之间共享了大多数直系同源基因(10,730个),但我们鉴定出381个独特的直系同源基因和少量高度分化的共享单拷贝同源基因(3.84%)。这些基因集差异可能代表了由于这些苍蝇不同的地理起源或对圈养条件的适应而导致的种群水平变异。与当前NCBI RefSeq Gff基因组相比,我们新的高质量基因组在连续性和完整性方面有所改进,为采采蝇的深入研究奠定了基础,能够实现强大的从实验室到实地的转化应用,以加深我们对媒介生物学和疾病传播动态的理解。