Jancik-Prochazkova Anna, Nakao Riku, Yamaguchi Yuichi, Kudo Akihiko, Ariga Katsuhiko
Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
J Am Chem Soc. 2025 Jun 25;147(25):22003-22014. doi: 10.1021/jacs.5c05661. Epub 2025 Jun 12.
The potential of hydrogen as a next-generation fuel has recently attracted a great deal of attention because it is considered a green fuel originating from renewable sources. Material sciences with the tools of nanoarchitectonics are targeting a wide variety of suitable photocatalysts of different materials, morphologies, and dimensionalities. Here, we present the concept of the photocatalytic hydrogen evolution reaction (HER) using microrobots: tiny autonomous devices possessing propulsion and photocatalytic abilities. The microrobots were derived from a black TiO (bTiO) material that provided the photocatalytic properties that contributed not only to successful light-induced propulsion but also to the activity toward the HER. In the next step, the decoration with magnetic nanoparticles (NPs) enabled the navigation of microrobots (mag-bTiO microrobots) in a magnetic field to enhance overall propulsion abilities and to allow their collection and consecutive reusability. As a result, mag-bTiO microrobots showed efficiency as dynamic photocatalysts for the HER; the positive contribution of the "on-the-fly" mode was confirmed by a control experiment using mag-bTiO microrobots as static photocatalysts. Furthermore, the overall efficiency of the HER was improved by decorating microrobots with atomic-level Pt species (mag-Pt-bTiO microrobots). The findings of this proof-of-concept study demonstrate an alternative approach toward the photocatalytic HER and lay the basis for the next generation of nano/microrobots for energy conversion applications.
氢作为下一代燃料的潜力最近引起了广泛关注,因为它被认为是一种源自可再生资源的绿色燃料。借助纳米结构技术的材料科学正在针对各种具有不同材料、形态和维度的合适光催化剂。在此,我们提出了使用微型机器人进行光催化析氢反应(HER)的概念:即具有推进和光催化能力的微小自主装置。这些微型机器人由黑色TiO(bTiO)材料制成,该材料不仅为成功的光致推进提供了光催化特性,还对HER具有活性。下一步,用磁性纳米颗粒(NPs)进行修饰,使微型机器人(磁bTiO微型机器人)能够在磁场中导航,从而提高整体推进能力,并使其能够收集和连续重复使用。结果,磁bTiO微型机器人作为HER的动态光催化剂表现出高效性;通过使用磁bTiO微型机器人作为静态光催化剂的对照实验证实了“动态”模式的积极作用。此外,通过用原子级Pt物种修饰微型机器人(磁Pt - bTiO微型机器人),提高了HER 的整体效率。这项概念验证研究的结果展示了一种光催化HER的替代方法,并为下一代用于能量转换应用的纳米/微型机器人奠定了基础。