Suppr超能文献

人工智能在产科风险预测中的应用:子痫前期机器学习模型的系统评价

Artificial Intelligence Applications in Obstetric Risk Prediction: A Systematic Review of Machine Learning Models for Preeclampsia.

作者信息

Mohamed Dkeen Nagla Osman, Dawelbait Radwan Madina Eltayeb, Alnaw Zumam Israa Ali, Abd Elfrag Mohamed Nihal Ahmed, Abbashar Abdelmahmoud Eman Mohammed, Elfadel Magboul Nisrin Magboul

机构信息

Obstetrics and Gynecology, Najran Armed Forces Hospital, Ministry of Defense Health Services, Najran, SAU.

Obstetrics and Gynecology, Aljabal Primary Health Care Center, Jazan, SAU.

出版信息

Cureus. 2025 May 12;17(5):e83961. doi: 10.7759/cureus.83961. eCollection 2025 May.

Abstract

Preeclampsia remains a leading cause of maternal and perinatal morbidity and mortality worldwide. While traditional prediction models have shown limited accuracy, machine learning (ML) approaches offer promising alternatives by handling complex, non-linear relationships in multidimensional datasets. This systematic review evaluates the performance, methodological quality, and clinical applicability of ML models for preeclampsia prediction. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, we searched five databases (PubMed, Embase, Scopus, Web of Science, and Cochrane Library) for studies published until April 15, 2025, and included studies that developed or validated ML models predicting preeclampsia. Risk of bias was assessed using the Prediction Model Risk-of-Bias Assessment Tool (PROBAST). Eleven studies (n = 11, comprising 116,253 pregnancies) were included. Ensemble methods (XGBoost, Random Forest) demonstrated superior performance, with area under the curve (AUCs) ranging from 0.84 to 0.973. Key predictors included mean arterial pressure, prior preeclampsia, and the biomarkers placental growth factor (PlGF) and pregnancy-associated plasma protein A (PAPP-A). Seven studies (63.6%) showed low overall risk of bias, while three (27.3%) had high risk due to analytical limitations. Only three studies (27.3%) conducted external validation. ML models, particularly ensemble methods, show excellent discriminative ability for preeclampsia prediction. However, heterogeneity in predictors and limited external validation constrain clinical translation. Future research should prioritize prospective validation studies with standardized outcome definitions and predictor sets.

摘要

子痫前期仍然是全球孕产妇和围产期发病及死亡的主要原因。虽然传统预测模型的准确性有限,但机器学习(ML)方法通过处理多维数据集中复杂的非线性关系提供了有前景的替代方案。本系统评价评估了用于子痫前期预测的ML模型的性能、方法学质量和临床适用性。遵循系统评价和Meta分析的首选报告项目(PRISMA)2020指南,我们检索了五个数据库(PubMed、Embase、Scopus、Web of Science和Cochrane图书馆),查找截至2025年4月15日发表的研究,并纳入了开发或验证预测子痫前期的ML模型的研究。使用预测模型偏倚风险评估工具(PROBAST)评估偏倚风险。纳入了11项研究(n = 11,包括116,253例妊娠)。集成方法(XGBoost、随机森林)表现出卓越的性能,曲线下面积(AUC)范围为0.84至0.973。关键预测因素包括平均动脉压、既往子痫前期以及生物标志物胎盘生长因子(PlGF)和妊娠相关血浆蛋白A(PAPP-A)。7项研究(63.6%)显示总体偏倚风险较低,而3项研究(27.3%)由于分析局限性存在高风险。只有3项研究(27.3%)进行了外部验证。ML模型,特别是集成方法,在子痫前期预测方面显示出优异的判别能力。然而,预测因素的异质性和有限的外部验证限制了临床转化。未来的研究应优先进行具有标准化结局定义和预测因素集的前瞻性验证研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5db/12158820/6bc39f0b0f1f/cureus-0017-00000083961-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验