Suppr超能文献

使用 PREVAL 研究队列验证机器学习模型在子痫前期的早期预测中的应用。

Validation of machine-learning model for first-trimester prediction of pre-eclampsia using cohort from PREVAL study.

机构信息

Department of Obstetrics and Gynecology, Hospital Universitario de Torrejón, Torrejón de Ardoz, Madrid, Spain.

Faculty of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain.

出版信息

Ultrasound Obstet Gynecol. 2024 Jan;63(1):68-74. doi: 10.1002/uog.27478.

Abstract

OBJECTIVE

Effective first-trimester screening for pre-eclampsia (PE) can be achieved using a competing-risks model that combines risk factors from the maternal history with multiples of the median (MoM) values of biomarkers. A new model using artificial intelligence through machine-learning methods has been shown to achieve similar screening performance without the need for conversion of raw data of biomarkers into MoM. This study aimed to investigate whether this model can be used across populations without specific adaptations.

METHODS

Previously, a machine-learning model derived with the use of a fully connected neural network for first-trimester prediction of early (< 34 weeks), preterm (< 37 weeks) and all PE was developed and tested in a cohort of pregnant women in the UK. The model was based on maternal risk factors and mean arterial blood pressure (MAP), uterine artery pulsatility index (UtA-PI), placental growth factor (PlGF) and pregnancy-associated plasma protein-A (PAPP-A). In this study, the model was applied to a dataset of 10 110 singleton pregnancies examined in Spain who participated in the first-trimester PE validation (PREVAL) study, in which first-trimester screening for PE was carried out using the Fetal Medicine Foundation (FMF) competing-risks model. The performance of screening was assessed by examining the area under the receiver-operating-characteristics curve (AUC) and detection rate (DR) at a 10% screen-positive rate (SPR). These indices were compared with those derived from the application of the FMF competing-risks model. The performance of screening was poor if no adjustment was made for the analyzer used to measure PlGF, which was different in the UK and Spain. Therefore, adjustment for the analyzer used was performed using simple linear regression.

RESULTS

The DRs at 10% SPR for early, preterm and all PE with the machine-learning model were 84.4% (95% CI, 67.2-94.7%), 77.8% (95% CI, 66.4-86.7%) and 55.7% (95% CI, 49.0-62.2%), respectively, with the corresponding AUCs of 0.920 (95% CI, 0.864-0.975), 0.913 (95% CI, 0.882-0.944) and 0.846 (95% CI, 0.820-0.872). This performance was achieved with the use of three of the biomarkers (MAP, UtA-PI and PlGF); inclusion of PAPP-A did not provide significant improvement in DR. The machine-learning model had similar performance to that achieved by the FMF competing-risks model (DR at 10% SPR, 82.7% (95% CI, 69.6-95.8%) for early PE, 72.7% (95% CI, 62.9-82.6%) for preterm PE and 55.1% (95% CI, 48.8-61.4%) for all PE) without requiring specific adaptations to the population.

CONCLUSIONS

A machine-learning model for first-trimester prediction of PE based on a neural network provides effective screening for PE that can be applied in different populations. However, before doing so, it is essential to make adjustments for the analyzer used for biochemical testing. © 2023 International Society of Ultrasound in Obstetrics and Gynecology.

摘要

目的

使用结合了母体病史风险因素与生物标志物中位数倍数(MoM)值的竞争风险模型,可以实现有效的早孕期子痫前期(PE)筛查。通过机器学习方法的新模型已被证明可以达到类似的筛查性能,而无需将生物标志物的原始数据转换为 MoM。本研究旨在调查该模型是否可以在无需特定调整的情况下在不同人群中使用。

方法

此前,我们使用全连接神经网络开发并测试了一种用于早期(<34 周)、早产(<37 周)和所有 PE 的基于机器学习的早孕期预测模型,该模型基于母体风险因素和平均动脉压(MAP)、子宫动脉搏动指数(UtA-PI)、胎盘生长因子(PlGF)和妊娠相关血浆蛋白-A(PAPP-A)。在本研究中,该模型应用于西班牙 10110 例单胎妊娠数据集,这些妊娠参与了早孕期 PE 验证(PREVAL)研究,该研究使用胎儿医学基金会(FMF)竞争风险模型进行早孕期 PE 筛查。通过检查接受者操作特征曲线(ROC)下的面积(AUC)和在 10%筛阳性率(SPR)时的检出率(DR)来评估筛查的性能。将这些指标与应用 FMF 竞争风险模型得出的指标进行比较。如果未对 PlGF 进行分析器调整,则筛查性能较差,而 PlGF 的分析器在英国和西班牙不同。因此,使用简单线性回归进行了 PlGF 分析器调整。

结果

使用机器学习模型的早期、早产和所有 PE 的 10%SPR 的 DR 分别为 84.4%(95%CI,67.2-94.7%)、77.8%(95%CI,66.4-86.7%)和 55.7%(95%CI,49.0-62.2%),相应的 AUC 分别为 0.920(95%CI,0.864-0.975)、0.913(95%CI,0.882-0.944)和 0.846(95%CI,0.820-0.872)。这一性能是使用三种生物标志物(MAP、UtA-PI 和 PlGF)实现的;包含 PAPP-A 并不能显著提高 DR。机器学习模型的性能与 FMF 竞争风险模型相当(早期 PE 的 10%SPR 的 DR 为 82.7%(95%CI,69.6-95.8%),早产 PE 的 72.7%(95%CI,62.9-82.6%)和所有 PE 的 55.1%(95%CI,48.8-61.4%)),而无需针对人群进行特定调整。

结论

基于神经网络的早孕期 PE 预测的机器学习模型为 PE 提供了有效的筛查,可以在不同人群中应用。然而,在这样做之前,必须对用于生化检测的分析器进行调整。© 2023 年国际妇产科超声学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验