Suppr超能文献

一种用于偏头痛与抑郁症共病的混合数字-4E策略:关于人工智能驱动、神经适应性和暴露组感知方法的医学假说

A Hybrid Digital-4E Strategy for comorbid migraine and depression: a medical hypothesis on an AI-driven, neuroadaptive, and exposome-aware approach.

作者信息

Gazerani Parisa

机构信息

Department of Life Science and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.

出版信息

Front Neurol. 2025 May 29;16:1587296. doi: 10.3389/fneur.2025.1587296. eCollection 2025.

Abstract

OBJECTIVE

The co-occurrence of migraines and depression presents a critical clinical challenge, affecting up to 50% of individuals with either condition. This comorbidity leads to greater disability, higher healthcare costs, and poorer treatment outcomes than either disorder alone. Despite a bidirectional pathophysiological relationship, current models remain static and fragmented, treating each condition separately. This paper proposes a Hybrid Digital-4E Strategy, deployed on an AI-driven neuroadaptive digital health platform, integrating closed-loop therapy, digital phenotyping, and exposome tracking to enable real-time, personalized care.

METHODS

Grounded in the 4E cognition framework (Embodied, Embedded, Enactive, and Extended cognition), this strategy reconceptualizes migraine-depression as an interactive system rather than two separate conditions. The platform integrates real-time biomarker tracking, neuromorphic AI, and precision environmental analytics to dynamically optimize treatment. Adaptive chronotherapy, brain-computer interfaces (BCIs), and virtual reality (VR)-based neuroplasticity training further enhance intervention precision.

CONCLUSION

A closed-loop, AI-driven neuroadaptive system could improve outcomes by enabling early detection, real-time intervention, and precision care tailored to individual neurophysiological and environmental profiles. Addressing AI bias, data privacy, and clinical validation is crucial for implementation. If validated, this Hybrid Digital-4E Strategy could redefine migraine-depression management, paving the way for precision neuropsychiatry.

摘要

目的

偏头痛与抑郁症的共病是一个严峻的临床挑战,影响着高达50%患有一种疾病的个体。这种共病导致的残疾程度更高、医疗成本更高,且治疗结果比单独患任何一种疾病都更差。尽管存在双向病理生理关系,但目前的模型仍然是静态且碎片化的,对每种疾病分别进行治疗。本文提出了一种混合数字-4E策略,部署在人工智能驱动的神经自适应数字健康平台上,整合闭环治疗、数字表型分析和暴露组追踪,以实现实时、个性化护理。

方法

基于4E认知框架(具身认知、嵌入认知、生成认知和延展认知),该策略将偏头痛-抑郁症重新概念化为一个交互系统,而非两种独立的疾病。该平台整合实时生物标志物追踪、神经形态人工智能和精准环境分析,以动态优化治疗。适应性时间疗法、脑机接口(BCI)和基于虚拟现实(VR)的神经可塑性训练进一步提高干预精度。

结论

一个闭环、人工智能驱动的神经自适应系统可以通过实现早期检测、实时干预以及根据个体神经生理和环境特征量身定制的精准护理来改善治疗结果。解决人工智能偏差、数据隐私和临床验证问题对于实施至关重要。如果得到验证,这种混合数字-4E策略可能会重新定义偏头痛-抑郁症的管理,为精准神经精神病学铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e65c/12158715/e98afd70f493/fneur-16-1587296-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验