Xie Shuixiang, Wang Xiaojun, Li Yuhuan, Liu Shijie, Qian Jiahui, Zhang Yuhan, Jiang Linling, Cao Zhe, Yan Zhenhao, Wan Xiaoyu, Yang Zhaohang, Zou Longhua, Zhang Wei, Li Rui-Qing
School of Textile and Clothing, Nantong University Nantong 226019 PR China
College of Food and Biological Engineering, Chengdu University Chengdu 610106 China
Chem Sci. 2025 May 29;16(27):12587-12593. doi: 10.1039/d5sc01884f. eCollection 2025 Jul 10.
Hybrid water electrolysis is a promising approach for energy-saving hydrogen (H) generation by replacing the oxygen evolution reaction with the thermodynamically advantageous sulfion oxidation reaction (SOR). Herein, we designed iron-modified nickel selenide nanosheet arrays (Fe-NiSe) and used them as an electrocatalyst in bifunctional hydrogen evolution reaction (HER) and SOR to simultaneously facilitate H production and sulfion conversion into a valuable sulfur product. Fe-NiSe requires a low overpotential of 114 mV for the HER and a working potential of 0.340 V for the anodic SOR to attain 10 mA cm. Moreover, the two-electrode hybrid electrolysis cell employing Fe-NiSe as the cathode and anode requires a small voltage of 0.439 V at 10 mA cm, which greatly reduces the operating voltage by 1.186 V compared with that for overall water splitting, realizing energy-saving H production and high-value-added sulfur production. Theoretical calculations prove that Fe modification can accelerate water dissociation, optimize the adsorption behavior of hydrogen adsorption and sulfion, and promote the conversion process of sulfur intermediates. This study offers a simple approach to develop bifunctional catalytic electrodes for economically viable H generation and sulfur recovery.
混合水电解是一种很有前景的节能制氢方法,它通过用热力学上更有利的硫离子氧化反应(SOR)取代析氧反应来实现。在此,我们设计了铁改性的硒化镍纳米片阵列(Fe-NiSe),并将其用作双功能析氢反应(HER)和SOR的电催化剂,以同时促进氢气生成和硫离子转化为有价值的硫产物。Fe-NiSe在HER中需要114 mV的低过电位,在阳极SOR中达到10 mA cm⁻²时的工作电位为0.340 V。此外,以Fe-NiSe作为阴极和阳极的双电极混合电解槽在10 mA cm⁻²时需要0.439 V的小电压,与全水解相比,这大大降低了1.186 V的工作电压,实现了节能制氢和高附加值硫生产。理论计算证明,铁改性可以加速水的解离,优化氢吸附和硫离子的吸附行为,并促进硫中间体的转化过程。本研究提供了一种简单的方法来开发用于经济可行的制氢和硫回收的双功能催化电极。