Tan Ran, Liu Kexin, Zhu Xiaolong, Yang Siyu, Zhang Qian, Zhang Juzheng, Chang Zu, Chai Pengcheng, Wang Xuanze, Fontaine Olivier, Ai Xinping, Qian Jiangfeng
Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.
Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States.
J Am Chem Soc. 2025 Jun 25;147(25):21865-21876. doi: 10.1021/jacs.5c04997. Epub 2025 Jun 13.
Prelithiation is a recognized strategy to enhance the initial Coulombic efficiency (ICE) and energy density of lithium-ion batteries (LIBs). However, existing methods generally suffer from insufficient lithiation precision, poor spatial homogeneity, and limited operational feasibility. Here, a molecular customized prelithiation reagent, 1-methyl-naphthalene-lithium/2-methyl tetrahydrofuran ( = 0.21 V vs Li/Li), is designed to lithiate graphite anode to its threshold potential for irreversible Li-storage ( = 0.22 V vs Li/Li), thereby achieving an ideal ICE of 100%. The well-matched potentials of and enable self-terminating prelithiation upon reaching equilibrium states, precisely eliminating irreversible lithium loss while avoiding the stringent control of lithium dosages or durations required by traditional methods. Combined microstructural and computational analyses reveal that the spontaneous formation of Stage-IV lithium-graphite intercalation compounds ( = 0.22 V) drives the growth of spatially uniform, inorganic-rich solid-electrolyte interphases (SEI) with accelerated Li transport kinetics. Full cells incorporating prelithiated electrodes demonstrate marked improvements in ICE, capacity retention, and energy density. In addition, the universality of this potential-matching approach is demonstrated for hard carbon and silicon/carbon anodes. Our work advances the understanding of graphite intercalation chemistry and provides a scalable, customizable approach to precise prelithiation in LIBs.
预锂化是一种公认的提高锂离子电池(LIBs)初始库仑效率(ICE)和能量密度的策略。然而,现有方法通常存在锂化精度不足、空间均匀性差和操作可行性有限的问题。在此,设计了一种分子定制的预锂化试剂1-甲基萘锂/2-甲基四氢呋喃(相对于Li/Li为0.21V),将石墨阳极锂化至其不可逆锂存储的阈值电位(相对于Li/Li为0.22V),从而实现100%的理想ICE。 和 的电位匹配良好,在达到平衡状态时能够实现自终止预锂化,精确消除不可逆锂损失,同时避免传统方法所需的严格锂剂量或持续时间控制。微观结构和计算分析相结合表明,IV阶段锂-石墨插层化合物(相对于Li/Li为0.22V)的自发形成驱动了具有加速锂传输动力学的空间均匀、富含无机成分的固体电解质界面(SEI)的生长。包含预锂化电极的全电池在ICE、容量保持率和能量密度方面有显著提高。此外,这种电位匹配方法对硬碳和硅/碳阳极的通用性也得到了证明。我们的工作增进了对石墨插层化学的理解,并为LIBs中的精确预锂化提供了一种可扩展、可定制的方法。