Suppr超能文献

用于促进全水分解的、限制在金属有机框架中的面向孔隙空间分区的三明治铂阵列

Pore-Space-Partition-Oriented Sandwich Platinum Array Confined in a Metal-Organic Framework for Boosting Overall Water Splitting.

作者信息

Huo Jia-Min, Wang Ying, Ma Ze-Lin, Meng Jie, He Tian-Shu, Sun Bo-Lin, Li Shu-Ni, Zhai Quan-Guo

机构信息

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.

School of Chemistry and Chemical Engineering, Yulin University, Yulin, Shaanxi 719000, China.

出版信息

J Am Chem Soc. 2025 Jun 25;147(25):21855-21864. doi: 10.1021/jacs.5c04935. Epub 2025 Jun 13.

Abstract

The atomic-level dispersion of noble metals in porous materials is prospective for highly efficient catalyst systems but is still inscrutable. Inspired by sandwich compounds, platinum (Pt) atoms were rationally confined within a metal-organic framework (MOF) through pore space partition by conjugate interactions between Pt and parallel-distributed aromatic pore partitioners, forming 1D infinite Pt arrays. By regulating the distance between adjacent aromatic rings from 7 to 4.5 to 3 Å (∼ the diameter of the Pt atom), the particle size in sandwich Pt arrays decreased in a linear fashion with the Pt electronic orbital simultaneously regulated by a pore partitioner, MOF nodes, and near noble atoms, as revealed by AC high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, and theoretical simulations. The optimized MOF pore endows the Pt@MOF-BCP material with highly efficient utilization of Pt sites, best electron transmission efficiency, and excellent catalytic stability. At 10 mA·cm, an optimal Pt@MOF-BCP catalyst only needs ultralow overpotentials of 2.5 mV for hydrogen evolution reaction in the acidic electrolyte and 265 mV for oxygen evolution reaction in the alkaline electrolyte, exhibiting exceptional difunctional electrocatalytic performance superior to most benchmark catalysts. Remarkably, the cell voltage of Pt@MOF-BCP was dramatically reduced to 1.47 V at 10 mA·cm in practical application.

摘要

贵金属在多孔材料中的原子级分散对于高效催化剂体系具有广阔前景,但仍难以捉摸。受夹心化合物的启发,通过铂与平行分布的芳香族孔道分隔剂之间的共轭相互作用,利用孔道空间分隔,将铂(Pt)原子合理地限制在金属有机框架(MOF)内,形成一维无限Pt阵列。通过将相邻芳香环之间的距离从7 Å调节到4.5 Å再到3 Å(约为Pt原子的直径),夹心Pt阵列中的粒径呈线性减小,同时Pt电子轨道受到孔道分隔剂、MOF节点和近邻贵金属原子的调控,这由交流高角度环形暗场扫描透射电子显微镜、X射线吸收光谱和理论模拟揭示。优化后的MOF孔道赋予Pt@MOF-BCP材料高效的Pt位点利用率、最佳的电子传输效率和优异的催化稳定性。在10 mA·cm下,优化后的Pt@MOF-BCP催化剂在酸性电解液中析氢反应仅需2.5 mV的超低过电位,在碱性电解液中析氧反应需265 mV,展现出优于大多数基准催化剂的卓越双功能电催化性能。值得注意的是,在实际应用中,Pt@MOF-BCP在10 mA·cm下的电池电压大幅降至1.47 V。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验