Ullah Shafi, Ullah Hanif, García-Bernabé Abel, Andrio Andreu, Soucase Bernabe Mari, Compañ Vicente
Instituto de diseño y Fabricación (IDF)-Universitat Politècnica de València (UPV), Camino de Vera, s/n, 46022 Valencia, Spain.
Department of Electrical Engineering, Federal Urdu University (FUUAST) Islamabad, Pakistan.
Phys Chem Chem Phys. 2025 Jun 25;27(25):13557-13566. doi: 10.1039/d5cp01255d.
Tin disulfide (SnS) is an environmentally friendly and widely available material with a band gap ranging from approximately 2.20 to 2.45 eV, making it a strong candidate for use as a buffer layer in photovoltaic technologies. In this study, SnS was synthesized using the hydrothermal method. To enhance its interaction with visible light, vanadium (V) atoms-also earth-abundant and characterized by a low band gap-were incorporated into the SnS matrix. The atomic percentage of vanadium was varied from 0% to 10% in increments of 2%. A previous study conducted on similar mixed SnVS samples, though with different vanadium concentrations, suggested that V-doped SnS thin films could be suitable as buffer layers for solar cell fabrication. However, the electrical conductivity of these samples had not been quantified, and therefore, such a conclusion cannot be definitively confirmed. In this work, electrochemical impedance spectroscopy was used to determine the conductivity and diffusivity of vanadium-doped samples as a function of temperature. Our results revealed a percolation threshold at approximately 6% vanadium content, with notable changes in conductivity observed around 120 °C. The sample doped with 6% vanadium exhibited a significantly enhanced photocurrent response (3.0 × 10 A cm) compared to the undoped SnS thin films (4.0 × 10 A cm). These findings indicate that vanadium incorporation significantly alters the crystallinity of SnS, leading to changes in the melting temperature of the mixed SnVS samples. Such changes may induce structural relaxation, lattice dilation, or enhanced atomic interactions. Together with previous studies, these results highlight that V-doped SnS is a promising candidate for optoelectronic applications, including photoelectrochemical catalysis, photodetectors, and photovoltaic devices.
二硫化锡(SnS)是一种环境友好且广泛可得的材料,其带隙范围约为2.20至2.45电子伏特,这使其成为光伏技术中用作缓冲层的有力候选材料。在本研究中,采用水热法合成了SnS。为增强其与可见光的相互作用,将同样储量丰富且带隙较低的钒(V)原子掺入SnS基体中。钒的原子百分比以2%的增量从0%变化到10%。之前对类似的混合SnVS样品(尽管钒浓度不同)进行的一项研究表明,V掺杂的SnS薄膜可能适合用作太阳能电池制造的缓冲层。然而,这些样品的电导率尚未量化,因此,这一结论无法得到明确证实。在本工作中,使用电化学阻抗谱来确定V掺杂样品的电导率和扩散率随温度的变化。我们的结果显示,在钒含量约为6%时存在一个渗流阈值,在120℃左右观察到电导率有显著变化。与未掺杂的SnS薄膜(4.0×10 A cm)相比,掺杂6%钒的样品表现出显著增强的光电流响应(3.0×10 A cm)。这些发现表明,掺入钒会显著改变SnS的结晶度,导致混合SnVS样品的熔化温度发生变化。这种变化可能会引起结构弛豫、晶格膨胀或增强原子间相互作用。与之前的研究一起,这些结果突出表明,V掺杂的SnS是光电子应用的一个有前途的候选材料,包括光电化学催化、光电探测器和光伏器件。